Search results for: 1d convolutional neural network
-
Tagged images with LEGO bricks - Bionicle Hero Factory and Constraction
Open Research DataThe set contains images of LEGO bricks (from Bionicle Hero Factory and Constraction category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Tiles Round and Curved
Open Research DataThe set contains images of LEGO bricks (from Tiles Round and Curved category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Hinges Arms and Turntables
Open Research DataThe set contains images of LEGO bricks (from Hinges Arms and Turntables category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Plates Angled
Open Research DataThe set contains images of LEGO bricks (from Plates Angled category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Windows and Doors
Open Research DataThe set contains images of LEGO bricks (from Windows and Doors category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Plates Special
Open Research DataThe set contains images of LEGO bricks (from Plates Special category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Connectors
Open Research DataThe set contains images of LEGO bricks (from Technic Connectors category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Beams Special
Open Research DataThe set contains images of LEGO bricks (from Technic Beams Special category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks Curved
Open Research DataThe set contains images of LEGO bricks (from Bricks Curved category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Tiles Special
Open Research DataThe set contains images of LEGO bricks (from Tiles Special category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Transportation - Land
Open Research DataThe set contains images of LEGO bricks (from Transportation - Land category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Plates Round Curved and Dishes
Open Research DataThe set contains images of LEGO bricks (from Plates Round Curved and Dishes category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks Wedged
Open Research DataThe set contains images of LEGO bricks (from Bricks Wedged category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Axles
Open Research DataThe set contains images of LEGO bricks (from Technic Axles category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bars Ladders and Fences
Open Research DataThe set contains images of LEGO bricks (from Bars Ladders and Fences category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Steering Suspension and Engine
Open Research DataThe set contains images of LEGO bricks (from Technic Steering Suspension and Engine category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks Round and Cones
Open Research DataThe set contains images of LEGO bricks (from Bricks Round and Cones category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Special
Open Research DataThe set contains images of LEGO bricks (from Technic Special category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Plants and Animals
Open Research DataThe set contains images of LEGO bricks (from Plants and Animals category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks Sloped
Open Research DataThe set contains images of LEGO bricks (from Bricks Sloped category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Tiles
Open Research DataThe set contains images of LEGO bricks (from Tiles category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Windscreens and Fuselage
Open Research DataThe set contains images of LEGO bricks (from Windscreens and Fuselage category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks Special
Open Research DataThe set contains images of LEGO bricks (from Bricks Special category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks
Open Research DataThe set contains images of LEGO bricks (from Bricks category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Beams
Open Research DataThe set contains images of LEGO bricks (from Technic Beams category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Pins
Open Research DataThe set contains images of LEGO bricks (from Technic Pins category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Minifig Accessories
Open Research DataThe set contains images of LEGO bricks (from Minifig Accessories category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Plates
Open Research DataThe set contains images of LEGO bricks (from Plates category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Panels
Open Research DataThe set contains images of LEGO bricks (from Technic Panels category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublicationThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices
PublicationWe report on the depinning of nearly commensurate charge-density waves in 1T-TaS2 thin films at room temperature. A combination of the differential current–voltage measurements with the low-frequency noise spectroscopy provides unambiguous means for detecting the depinning threshold field in quasi-2D materials. The depinning process in 1T-TaS2 is not accompanied by an observable abrupt increase in electric current—in striking contrast...
-
Images of LEGO bricks
Open Research DataThe set contains images of LEGO bricks (from multiple categories). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Hybrid System for Ship-Aided Design Automation
PublicationA hybrid support system for ship design based on the methodology of CBR with some artificial intelligence tools such as expert system Exsys Developer along with fuzzy logic, relational Access database and artificial neural network with backward propagation of errors.
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublicationTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems
PublicationThe aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublicationThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublicationPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Computational intelligence methods in production management
PublicationThis chapter presents a survey of selected computational intelligence methods used in production management. This group of methods includes, among others, approaches based on the artificial neural networks, the evolutionary algorithms, the fuzzy logic systems and the particle swarm optimization mechanisms. From the abovementioned methods particularly noteworthy are the evolutionary and the particle swarm algorithms, which are successfully...
-
The role of EMG module in hybrid interface of prosthetic arm
PublicationNearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublicationPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
PublicationThis work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublicationThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Survival time prognosis under a Markov model of cancer development
PublicationIn this study we look at a breast cancer data set of women from Pomerania region collected in year 1987-1992 in the Medical University of Gdańsk. We analyze the clinical risk factors in conjunction with Markov model of cancer development. We evaluate Artificial Neural Network (ANN) survival time prediction via a simulation study.
-
The Use of an Autoencoder in the Problem of Shepherding
PublicationThis paper refers to the problem of shepherding clusters of passive agents consisting of a large number of objects by a team of active agents. The problem of shepherding and the difficulties that arise with the increasing number of data describing the location of agents have been described. Several methods for reducing the dimensionality of data are presented. Selected autoencoding method using a Restricted Boltzmann Machine is...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublicationIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Pose classification in the gesture recognition using the linear optical sensor
PublicationGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Video of LEGO Bricks on Conveyor Belt Dataset Series
PublicationThe dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.
-
Adding Interpretability to Neural Knowledge DNA
PublicationThis paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...