Search results for: ENERGY EQUATION
-
Computational issues of solving the 1D steady gradually varied flow equation
PublicationIn this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution....
-
Studies of Nonlinear Sound Dynamics in Fluids Based on the Caloric Equation of State
PublicationThe sound speed and parameters of nonlinearity B/A, C/A in a fluid are expressed in terms of coefficients in the Taylor series expansion of an excess internal energy, in powers of excess pressure and density. That allows to conclude about features of the sound propagation in fluids, the internal energy of which is known as a function of pressure and density. The sound speed and parameters of nonlinearity in the mixture consisting...
-
Equivariant Morse equation
PublicationThe paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by x˙ = − ∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.
-
Electronically Excited States in Solution via a Smooth Dielectric Model Combined with Equation-of-Motion Coupled Cluster Theory
PublicationWe present a method for computing excitation energies for molecules in solvent, based on the combination of a minimal parameter implicit solvent model and the equation-of-motion coupled-cluster singles and doubles method (EOM-CCSD). In this method, the solvent medium is represented by a smoothly varying dielectric function, constructed directly from the quantum mechanical electronic density using only two tunable parameters. The...
-
Dimensionally Consistent Nonlinear Muskingum Equation
PublicationAlthough the Muskingum equation was proposed nearly 75 years ago, it is still a subject of active research. Despite of its simple form, the real properties of this equation have not been comprehensively explained. This paper proposes a new interpretation of the linear McCarthy’s relation. This relation can be interpreted only together with the storage equation, whereas the Muskingum equation can be derived directly from the system...
-
Equation of state for Eu-doped SrSi2O2N2
Publication -
Approximated boundary conditions of the equation of difussion
PublicationProblem podejmowany w pracy dotyczy warunku brzegowego w równaniach fizyki matematycznej, opisujących procesy migracji zanieczyszczeń. W szczególności skoncentrowano się na badaniu wpływu na rozwiązanie przyjmowanych w rozwiązaniach numerycznych aproksymacji ''odpływowego'' warunku brzegowego w jednowymiarowym równaniu adwekcji - dyspersji. Rozważania teoretyczne przeprowadzono w oparciu o rozwiązania analityczne oraz numeryczne...
-
Newton’s Method for the McKendrick-von Foerster Equation
PublicationIn the paper we study an age-structured model which describes the dynamics of one population with growth, reproduction and mortality rates. We apply Newton’smethod to the McKendrick-von Foerster equation in the semigroup setting. We prove its first- and second-order convergence.
-
Thermal ablation modeling via bioheat equation
PublicationWe consider Pennes’ bioheat equation and discuss an implicit numerical scheme which has better stability properties than other approaches. Our discussion concerns Carthesian geometry problems, however it carries over to spherical geometry models and more complicated shapes.
-
Potential energy curve, rovibrational energies and nuclear wave functions of 2 singlet Pi state in KLi dimer
Open Research DataThis data sets contains potential energy curve, energy levels and nuclear wave functions of rovibrational states of KLi dimer in 2 singlet Pi electronic state. Potential energy curve (PEC) for the electronic state was calculated in the Born-Oppenheimer approximation by the means of effective core potentials and MRCI method. Nuclear wave functions and...
-
Straightened characteristics of McKendrick-von Foerster equation
PublicationWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Open Research DataA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Aerated grit chambers hydraulic design equation.
PublicationW pracy zaproponowano metodę wymiarowania piaskowników napowietrzanych. Jej głównymi elementami są wyznaczanie niezbędnej intensywności aeracji ścieków, pola ich prędkości oraz trajektorii cząstek zawiesiny.
-
Quantum corections to SG equation solutions and applications
Publication -
Balance error generated by numerical diffusion in the solution of Muskingum equation
PublicationIn the paper the conservative properties of the lumped hydrological models with variable parameters are discussed. It is shown that in the case of the non-linear Muskingum equation the mass balance is not satisfied. The study indicates that the mass balance errors are caused by the improper form of equation and by the numerical diffusion which is generated in the solution. It has been shown that the classical way of derivation...
-
Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation
PublicationTwo nonlinear versions of the Muskingum equation are considered. The difference between both equations relates to the exponent parameter. In the first version, commonly used in hydrology, this parameter is considered as free, while in the second version, it takes a value resulting from the kinematic wave theory. Consequently, the first version of the equation is dimensionally inconsistent, whereas the proposed second one is consistent. It...
-
Numerical Characterization of Thresholds for the Focusing 1d Nonlinear Schrödinger Equation
PublicationThe focusing nonlinear Schrödinger equation arises in various physical phenomena and it is therefore of interest to determine mathematical conditions on the initial data that guarantee whether the corresponding solution will blow up in finite time or exist globally in time. We focus on solutions to the mass‐supercritical nonlinear Schrödinger equation (1) in 1D case. In particular, we investigate numerical thresholds between blow...
-
Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow
PublicationTo find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is a discrete form of the differential energy equation. Such an approach requires the average energy slope between cross-sections to be estimated. In the literature, many methods are proposed for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the standard step method, the harmonic mean and...
-
Numerical analysis of open channel steady gradually varied flow using the simplified saint-venant equations
PublicationFor one-dimensional open-channel flow modeling, the energy equation is usually used. There exist numerous approaches using the energy equation for open-channel flow computations, which resulted in the development of several very efficient methods for solving this problem applied to channel networks. However, the dynamic equation can be used for this purpose as well. This paper introduces a method for solving a system of non-linear...
-
Reduction restrictions of Darboux and Laplace transformations for the Goursat equation
PublicationZredukowane przekształcenia Darboux i Laplace`a dla równania Goursata zastosowane do rozwiązywania problemów nieliniowych i geometrycznych. Podaje się nowe rozwiązania równań KdV-MKdV w przestrzeni 2+1.
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublicationIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
Thermal ablation modeling via the bioheat equation and its numerical treatment
PublicationThe phenomenon of thermal ablation is described by Pennes’ bioheat equation. This model is based on Newton’s law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.
-
Liquid water. Analytical equation of state and acoustic parameters evaluation.
PublicationRównanie stanu dla ciekłej wody zaproponowane przez Jefferya - Austina zastosowano do obliczeń prędkości dźwięku oraz parametru nieliniowości B/A. Parametry akustyczne są porównywane z danymi doświadczalnymi.
-
Mesh-free approach to Helmholtz equation on radial basis functions
PublicationMetoda radialnych funkcji bazowych (RBF) jest coraz czesciej stosowana przy rozwiazywaniu rownan rozniczkowych czastkowych oraz zagadnien wlasnych. W szczegolnosci znalazla ona zastosowanie w problemach elektrodynamiki obliczeniowej. W publikacji zastosowano RBF do rozwiazania rownania Helmholtza. Wprowadzono nowy algorytm - adaptacyjny do wyznaczania centrow interpolacyjnych. Przedstawiona metode zastosowano do wyznaczenia rozkladow...
-
Analysis of the KZK equation solution for fixed pressure distributions at the piston
PublicationPraca dotyczy zagadnienia oddziaływania fal o dużej amplitudzie, generowanych przez przetwornik kołowy o gaussowskim rozkładzie ciśnienia. Model matematyczny zbudowano w oparciu o równania KZK. Do rozwiązania zagadnienia zastosowano metodę różnic skończonych. Badano zmiany ciśnienia fal różnych częstotliwości w obrębie wiązki akustycznej. Wyniki obliczeń numerycznych porównano z odpowiednimi rozwiązaniami analitycznymi
-
Design Equation for Stirring Fluid by a Stream Pump in a Circulating Tank
PublicationA circulating tank is a very useful theoretical scheme for many fluid-flow objects in several branches of engineering. The motion of the fluid in such objects can be induced in different ways. A stream pump provides an especially interesting possibility; however, the quantitative description of such devices shows some shortcomings. Such a device is analogous to a jet pump, thus has similar advantages (simplicity of construction,...
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublicationIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
Nonlinear Influence of Sound on the Vibrational Energy of Molecules in a Relaxing Gas
PublicationDynamics of a weakly nonlinear and weakly dispersive flow of a gas where molecular vibrational relaxation takes place is studied. Variations in the vibrational energy in the field of intense sound is considered. These variations are caused by a nonlinear transfer of the acoustic energy into energy of vibrational degrees of freedom in a relaxing gas. The final dynamic equation which describes this is instantaneous, it includes a...
-
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublicationWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
Thresholds of Lasing as Solutions of Characteristic Equation for a VCSEL-type Layered Structure
Publication -
Mesh-free approach to Helmholtz equation based on radial basis functions.
PublicationW artykule zastosowano metodę radialnych funkcji bazowych do rozwiązania równania Helmholthza oraz zaproponowano nowy (adaptacyjny) algorytm wyznaczania centrów interpolacyjnych. W oparciu o prezentowany schemat wyznaczono długości fal odcięcia dla różnych kształtów przekrojów poprzecznych falowodów cylindrycznych.
-
Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment
PublicationWe study the entropy production that is associated with the growing or shrinking of a small granule in, for instance, a colloidal suspension or in an aggregating polymer chain. A granule will fluctuate in size when the energy of binding is comparable to k_{B}T, which is the “quantum” of Brownian energy. Especially for polymers, the conformational energy landscape is often rough and has been commonly modeled as being self-similar...
-
The application of Monod equation to denitrification kinetics description in the moving bed biofilm reactor (MBBR)
PublicationIn this paper, the kinetic constants Vmax and KCOD occurring in the Monod equation, which describe the denitrification process in the moving bed, are determined. For this purpose, a laboratory moving bed biofilm reactor (MBBR) was used. The filling of the reactor consisted of EvU Perl carriers. The experiment was carried out with an excess of nitrate, and denitrification rate was dependent on the concentration of external organic...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublicationVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation
PublicationIn this note, we establish the property of convergence for a finite-difference discretization of a diffusive partial differential equation with generalized Burgers convective law and generalized Hodgkin–Huxley reaction. The numerical method was previously investigated in the literature and, amongst other features of interest, it is a fast and nonlinear technique that is capable of preserving positivity, boundedness and monotonicity....
-
Simulating propagation of coherent light in random media using the Fredholm type integral equation
PublicationStudying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g....
-
Methods of solving the Atkins equation determine shear angle with taking into consideration a modern fracture mechanics
PublicationIn the paper are presented methods of solving nonlinear Atkins equation . The Atkins equation describe shear angle with taking into account properties of material cutting. To solve Atkins equation has been used iterative methods: Newton method and simplified method of simple iteration. Method of simple iteration is presented in the form of Java application.
-
Determination of dryout localization using a five-equation model of annular flow for boiling in minichannels
PublicationDetailed studies have suggested that the critical heat flux in the form of dryout in minichannels occurs when the combined effects of entrainment, deposition, and evaporation of the film make the film flow rate go gradually and smoothly to zero. Most approaches so far used the mass balance equation for the liquid film with appropriate formulations for the rate of deposition and entrainment respectively. It must be acknowledged...
-
Computationally Effcient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
PublicationThis paper presents a study dealing with increasing the computational efficiency in modeling floodplain inundation using a two-dimensional diffusive wave equation. To this end, the domain decomposition technique was used. The resulting one-dimensional diffusion equations were approximated in space with the modified finite element scheme, whereas time integration was carried out using the implicit two-level scheme. The proposed...
-
Dirichlet-to-Neumann and Neumann-to-Dirichlet embedding methods for bound states of the Dirac equation
PublicationZaprezentowano uogólnienie formalizmu operatorów Dirichleta-Neumanna (DtN) i Neumanna-Dirichleta (NtD) na przypadek równania Diraca. Przedstawiono zastosowanie tego formalizmu do znajdowania poziomów energetycznych cząstki Diraca związanej w potencjale.
-
Application of the Fröbenius method to the Schrödinger equation for a spherically symmetric potential: an anharmonic oscillator
Publication -
Dirichlet-to-Neumann and Neumann-to-Dirichlet embedding methods for bound states of the Schrodinger equation.
PublicationPrzeformułowano metodę Inglesfielda, stosowaną do obliczania własności stanów związanych równania Schrodingera, stosując formalizm operatorów całkowych Dirichleta-do-Neumanna(DtN) i Neumanna-do-Dirichleta (NtD). Wykorzystano zasady wariacyjne dla energii dopuszczające użycie funkcji próbnych nieciągłych wraz z pochodnymi. Podano metodę konstrukcji jąder operatorów DtN i NtD za pomocą rozwiązań zagadnienia własnego typu Steklova....
-
Considerations about the applicability of the Reynolds equation for analyzing high-speed near field levitation phenomena
Publicationequation for analyzing near field levitation (NFL) phenomena. Two separate approaches were developed, experimentally verified, and applied to meet the research objective. One was based on the Reynolds equation and the other was based on general conservation equations for fluid flow solved using computational fluid dynamic (CFD). Comparing the calculation results revealed that, for certain operating conditions, differences in the...
-
Modelling of FloodWave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation
PublicationA full dynamic model in the form of the shallow water equations (SWE) is often useful for reproducing the unsteady flow in open channels, as well as over a floodplain. However, most of the numerical algorithms applied to the solution of the SWE fail when flood wave propagation over an initially dry area is simulated. The main problems are related to the very small or negative values of water depths occurring in the vicinity of...
-
Impact of the Finite Element Mesh Structure on the Solution Accuracy of a Two-Dimensional Kinematic Wave Equation
PublicationThe paper presents the influence of the finite element mesh structure on the accuracy of the numerical solution of a two-dimensional linear kinematic wave equation. This equation was solved using a two-level scheme for time integration and a modified finite element method with triangular elements for space discretization. The accuracy analysis of the applied scheme was performed using a modified equation method for three different...
-
Numerical Solution of the Two-Dimensional Richards Equation Using Alternate Splitting Methods for Dimensional Decomposition
PublicationResearch on seepage flow in the vadose zone has largely been driven by engineering and environmental problems affecting many fields of geotechnics, hydrology, and agricultural science. Mathematical modeling of the subsurface flow under unsaturated conditions is an essential part of water resource management and planning. In order to determine such subsurface flow, the two-dimensional (2D) Richards equation can be used. However,...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublicationIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
Determination of equivalent axle load factors with the use of strain energy of distortion
PublicationThe paper proposes a new method for calculation of equivalent axle load factors based on the analysis of strain energy of distortion induced in road pavements by traffic loads. The main advantage of the method is the more accurate calculation of the effects of multiple axles and super single versus dual tyres. The methodconsiders the location of critical points, at which strain energy of distortion reaches extreme values. When...
-
Comparative analysis of numerical with optical soliton solutions of stochastic Gross–Pitaevskii equation in dispersive media
PublicationThis article deals with the stochastic Gross–Pitaevskii equation (SGPE) perturbed with multiplicative time noise. The numerical solutions of the governing model are carried out with the proposed stochastic non-standard finite difference (SNSFD) scheme. The stability of the scheme is proved by using the Von-Neumann criteria and the consistency is shown in the mean square sense. To seek exact solutions, we applied the Sardar subequation...
-
MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
PublicationThe purpose of this work is to study the memory effect analysis of Caputo–Fabrizio time fractional diffusion equation by means of cubic B-spline functions. The Caputo–Fabrizio interpretation of fractional derivative involves a non-singular kernel that permits to describe some class of material heterogeneities and the effect of memory more effectively. The proposed numerical technique relies on finite difference approach and cubic...