Filters
total: 79
Search results for: GRAPHICS PROCESSING UNIT (GPU)
-
Implementation of FDTD-Compatible Green's Function on Graphics Processing Unit
PublicationIn this letter, implementation of the finite-difference time domain (FDTD)-compatible Green's function on a graphics processing unit (GPU) is presented. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates its applications in the FDTD simulations of radiation and scattering problems. Unfortunately, implementation of the new DGF formula in software requires a multiple precision...
-
Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system
PublicationThis paper presents an implementation of the FDTD-compatible Green's function on a heterogeneous parallel processing system. The developed implementation simultaneously utilizes computational power of the central processing unit (CPU) and the graphics processing unit (GPU) to the computational tasks best suited to each architecture. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates...
-
Acceleration of the DGF-FDTD method on GPU using the CUDA technology
PublicationWe present a parallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method on a graphics processing unit (GPU). The compute unified device architecture (CUDA) parallel computing platform is applied in the developed implementation. For the sake of example, arrays of Yagi-Uda antennas were simulated with the use of DGF-FDTD on GPU. The efficiency of parallel computations...
-
Parallel implementation of the DGF-FDTD method on GPU Using the CUDA technology
PublicationThe discrete Green's function (DGF) formulation of the finite-difference time-domain method (FDTD) is accelerated on a graphics processing unit (GPU) by means of the Compute Unified Device Architecture (CUDA) technology. In the developed implementation of the DGF-FDTD method, a new analytic expression for dyadic DGF derived based on scalar DGF is employed in computations. The DGF-FDTD method on GPU returns solutions that are compatible...
-
GPU Acceleration of Multilevel Solvers for Analysis of Microwave Components With Finite Element Method
PublicationThe letter discusses a fast implementation of the conjugate gradient iterative method with ${rm E}$-field multilevel preconditioner applied to solving real symmetric and sparse systems obtained with vector finite element method. In order to accelerate computations, a graphics processing unit (GPU) was used and significant speed-up (2.61 fold) was achieved comparing to a central processing unit (CPU) based approach. These results...
-
Finite element matrix generation on a GPU
PublicationThis paper presents an efficient technique for fast generation of sparse systems of linear equations arising in computational electromagnetics in a finite element method using higher order elements. The proposed approach employs a graphics processing unit (GPU) for both numerical integration and matrix assembly. The performance results obtained on a test platform consisting of a Fermi GPU (1x Tesla C2075) and a CPU (2x twelve-core...
-
GPU based implementation of Temperature-Vegetation Dryness Index for AVHRR3 Satellite Data
PublicationPaper presents an implementation of TVDI (Temperature-Vegetation-Dryness Index) algorithm on GPU (Graphics Processing Unit). Calculation of this index is based on LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index). Discussed results are based on multi-spectral imagery retrieved from AVHRR3 sensors for area of Poland. All phases of TVDI implementation on GPU are modified in respect to CUDA platform....
-
Jacobi and gauss-seidel preconditioned complex conjugate gradient method with GPU acceleration for finite element method
PublicationIn this paper two implementations of iterative solvers for solving complex symmetric and sparse systems resulting from finite element method applied to wave equation are discussed. The problem under investigation is a dielectric resonator antenna (DRA) discretized by FEM with vector elements of the second order (LT/QN). The solvers use the preconditioned conjugate gradient (pcg) method implemented on Graphics Processing Unit (GPU)...
-
Implementation of TVDI calculation for coastal zone
PublicationPaper will show an implementation of TVDI (Temperature-Vegetation-Dryness Index) algorithm on GPU (Graphics Processing Unit). Calculation of this index is based on LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index). Discussed results are based on multi-spectral imagery retrieved from AVHRR3 sensors for area of Poland, especially from region of Gdańsk coastal zone. All phases of TVDI implementation...
-
Tuning matrix-vector multiplication on GPU
PublicationA matrix times vector multiplication (matvec) is a cornerstone operation in iterative methods of solving large sparse systems of equations such as the conjugate gradients method (cg), the minimal residual method (minres), the generalized residual method (gmres) and exerts an influence on overall performance of those methods. An implementation of matvec is particularly demanding when one executes computations on a GPU (Graphics...
-
Accuracy, Memory and Speed Strategies in GPU-based Finite-Element Matrix-Generation
PublicationThis paper presents strategies on how to optimize GPU-based finite-element matrix-generation that occurs in the finite-element method (FEM) using higher order curvilinear elements. The goal of the optimization is to increase the speed of evaluation and assembly of large finite-element matrices on a single GPU (Graphics Processing Unit) while maintaining the accuracy of numerical integration at the desired level. For this reason,...
-
A memory efficient and fast sparse matrix vector product on a Gpu
PublicationThis paper proposes a new sparse matrix storage format which allows an efficient implementation of a sparse matrix vector product on a Fermi Graphics Processing Unit (GPU). Unlike previous formats it has both low memory footprint and good throughput. The new format, which we call Sliced ELLR-T has been designed specifically for accelerating the iterative solution of a large sparse and complex-valued system of linear equations arising...
-
GPU-Accelerated 3D Mesh Deformation for Optimization Based on the Finite Element Method
PublicationThis paper discusses a strategy for speeding up the mesh deformation process in the design-byoptimization of high-frequency components involving electromagnetic field simulations using the 3D finite element method (FEM). The mesh deformation is assumed to be described by a linear elasticity model of a rigid body; therefore, each time the shape of the device is changed, an auxiliary elasticity finite-element problem must be solved....
-
A GPU Solver for Sparse Generalized Eigenvalue Problems with Symmetric Complex-Valued Matrices Obtained Using Higher-Order FEM
PublicationThe paper discusses a fast implementation of the stabilized locally optimal block preconditioned conjugate gradient (sLOBPCG) method, using a hierarchical multilevel preconditioner to solve nonHermitian sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The resonant frequencies of the low-order...
-
GPU-Accelerated LOBPCG Method with Inexact Null-Space Filtering for Solving Generalized Eigenvalue Problems in Computational Electromagnetics Analysis with Higher-Order FEM
PublicationThis paper presents a GPU-accelerated implementation of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method with an inexact nullspace filtering approach to find eigenvalues in electromagnetics analysis with higherorder FEM. The performance of the proposed approach is verified using the Kepler (Tesla K40c) graphics accelerator, and is compared to the performance of the implementation based on functions from...
-
Preconditioners with Low Memory Requirements for Higher-Order Finite-Element Method Applied to Solving Maxwell’s Equations on Multicore CPUs and GPUs
PublicationThis paper discusses two fast implementations of the conjugate gradient iterative method using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations. In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on the lowest level is solved...
-
How to render FDTD computations more effective using agraphics accelerator.
PublicationGraphics processing units (GPUs) for years have been dedicated mostly to real time rendering. Recently leading GPU manufactures have extended their research area and decided to support also graphics computing. In this paper, we describe an impact of new GPU features on development process of an efficient finite difference time domain (FDTD) implementation.
-
Optimizing the computation of a parallel 3D finite difference algorithm for graphics processing units
PublicationThis paper explores the possibilities of using a graphics processing unit for complex 3D finite difference computation via MUSTA‐FORCE and WENO algorithms. We propose a novel algorithm based on the new properties of CUDA surface memory optimized for 2D spatial locality and compare it with 3D stencil computations carried out via shared memory, which is currently considered to be the best approach. A case study was performed for...
-
OpenGL accelerated method of the material matrix generation for FDTD simulations
PublicationThis paper presents the accelerated technique of the material matrix generation from CAD models utilized by the finite-difference time-domain (FDTD) simulators. To achieve high performance of these computations, the parallel-processing power of a graphics processing unit was employed with the use of the OpenGL library. The method was integrated with the developed FDTD solver, providing approximately five-fold speedup of the material...
-
Optymalizacja wydajności obliczeniowej metody elementów skończonych w architekturze CUDA
PublicationCelem niniejszej rozprawy oraz stypendium odbytego w ramach projektu było opracowanie numerycznie efektywnego rozwiązania algorytmicznego i sprzętowego, które umożliwia przyspieszenie analizy problemów elektromagnetycznych metodą elementów skończonych (MES) z funkcjami bazowymi wysokiego rzędu. Metoda elementów skończonych w dziedzinie częstotliwości stanowi wydajne i uniwersalne narzędzie analizy układów mikrofalowych (rys....
-
Communication and Load Balancing Optimization for Finite Element Electromagnetic Simulations Using Multi-GPU Workstation
PublicationThis paper considers a method for accelerating finite-element simulations of electromagnetic problems on a workstation using graphics processing units (GPUs). The focus is on finite-element formulations using higher order elements and tetrahedral meshes that lead to sparse matrices too large to be dealt with on a typical workstation using direct methods. We discuss the problem of rapid matrix generation and assembly, as well as...
-
Generation of large finite-element matrices on multiple graphics processors
PublicationThis paper presents techniques for generating very large finite-element matrices on a multicore workstation equipped with several graphics processing units (GPUs). To overcome the low memory size limitation of the GPUs, and at the same time to accelerate the generation process, we propose to generate the large sparse linear systems arising in finite-element analysis in an iterative manner on several GPUs and to use the graphics...
-
Single and Dual-GPU Generalized Sparse Eigenvalue Solvers for Finding a Few Low-Order Resonances of a Microwave Cavity Using the Finite-Element Method
PublicationThis paper presents two fast generalized eigenvalue solvers for sparse symmetric matrices that arise when electromagnetic cavity resonances are investigated using the higher-order finite element method (FEM). To find a few loworder resonances, the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm with null-space deflation is applied. The computations are expedited by using one or two graphical processing...
-
A Task-Scheduling Approach for Efficient Sparse Symmetric Matrix-Vector Multiplication on a GPU
PublicationIn this paper, a task-scheduling approach to efficiently calculating sparse symmetric matrix-vector products and designed to run on Graphics Processing Units (GPUs) is presented. The main premise is that, for many sparse symmetric matrices occurring in common applications, it is possible to obtain significant reductions in memory usage and improvements in performance when the matrix is prepared in certain ways prior to computation....
-
GPU-accelerated finite element method
PublicationIn this paper the results of the acceleration of computations involved in analysing electromagnetic problems by means of the finite element method (FEM), obtained with graphics processors (GPU), are presented. A 4.7-fold acceleration was achieved thanks to the massive parallelization of the most time-consuming steps of FEM, namely finite-element matrix-generation and the solution of a sparse system of linear equations with the...
-
Advanced Potential Energy Surfaces for Molecular Simulation
PublicationAdvanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models...
-
Comparing Apples and Oranges: A Mobile User Experience Study of iOS and Android Consumer Devices
PublicationWith the rapid development of wireless networks and the spread of broadband access around the world, the number of active mobile user devices continues to grow. Each year more and more terminals are released on the market, with the smartphone being the most popular among them. They include low-end, mid-range, and of course high-end devices, with top hardware specifications. They do vary in build quality, utilized type of material,...
-
Krylov Space Iterative Solvers on Graphics Processing Units
PublicationCUDA architecture was introduced by Nvidia three years ago and since then there have been many promising publications demonstrating a huge potential of Graphics Processing Units (GPUs) in scientific computations. In this paper, we investigate the performance of iterative methods such as cg, minres, gmres, bicg that may be used to solve large sparse real and complex systems of equations arising in computational electromagnetics.
-
Modelling and simulation of GPU processing in the MERPSYS environment
PublicationIn this work, we evaluate an analytical GPU performance model based on Little's law, that expresses the kernel execution time in terms of latency bound, throughput bound, and achieved occupancy. We then combine it with the results of several research papers, introduce equations for data transfer time estimation, and finally incorporate it into the MERPSYS framework, which is a general-purpose simulator for parallel and distributed...
-
Relativistic hydrodynamics on graphics processing units
Publication -
Multi-GPU-powered UNRES package for physics-based coarse-grained simulations of structure, dynamics, and thermodynamics of protein systems at biological size- and timescales
PublicationCoarse-grained models are nowadays extensively used in biomolecular simulations owing to the tremendous extension of size- and time-scale of simulations. The physics-based UNRES (UNited RESidue) model of proteins developed in our laboratory has only two interaction sites per amino-acid residue (united peptide groups and united side chains) and implicit solvent. However, owing to rigorous physics-based derivation, which enabled...
-
Investigation of Parallel Data Processing Using Hybrid High Performance CPU + GPU Systems and CUDA Streams
PublicationThe paper investigates parallel data processing in a hybrid CPU+GPU(s) system using multiple CUDA streams for overlapping communication and computations. This is crucial for efficient processing of data, in particular incoming data stream processing that would naturally be forwarded using multiple CUDA streams to GPUs. Performance is evaluated for various compute time to host-device communication time ratios, numbers of CUDA streams,...
-
A New Approach of Solidification Analysis in Modular Latent Thermal Energy Storage Unit Based on Image Processing
PublicationThe solidification process of RT18HC in a cylindrical shell and tube storage unit has been studied using a new methodology based on image processing. The main idea of the algorithm is to label the region of solidification and use statistical functions to calculate the dimensions of the solidification front over time. Said analysis includes two methods. The first method is to measure the solid fraction changes during solidification....
-
Parallel Implementation of the Discrete Green's Function Formulation of the FDTD Method on a Multicore Central Processing Unit
PublicationParallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method was developed on a multicore central processing unit. DGF-FDTD avoids computations of the electromagnetic field in free-space cells and does not require domain termination by absorbing boundary conditions. Computed DGF-FDTD solutions are compatible with the FDTD grid enabling the perfect hybridization of FDTD...
-
Paweł Czarnul dr hab. inż.
PeoplePaweł Czarnul obtained a D.Sc. degree in computer science in 2015, a Ph.D. in computer science granted by a council at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology in 2003. His research interests include:parallel and distributed processing including clusters, accelerators, coprocessors; distributed information systems; architectures of distributed systems; programming mobile devices....
-
International Journal of Image, Graphics and Signal Processing
Journals -
Grzegorz Szwoch dr hab. inż.
PeopleGrzegorz Szwoch was born in 1972 in Gdansk. In 1991-1996 he studied at the Technical University of Gdansk. In 1996 he graduated as a student from the Sound Engineering Department. His thesis was related to physical modeling of musical instruments. Since that time he has been a member of the research staff at the Multimedia Systems Department as a PhD student (1996-2001), Assistant (2001-2004), Assistant professor (2004-2020) and...
-
High performance filtering for big datasets from Airborne Laser Scanning with CUDA technology
PublicationThere are many studies on the problems of processing big datasets provided by Airborne Laser Scanning (ALS). The processing of point clouds is often executed in stages or on the fragments of the measurement set. Therefore, solutions that enable the processing of the entire cloud at the same time in a simple, fast, efficient way are the subject of many researches. In this paper, authors propose to use General-Purpose computation...
-
Performance evaluation of the parallel object tracking algorithm employing the particle filter
PublicationAn algorithm based on particle filters is employed to track moving objects in video streams from fixed and non-fixed cameras. Particle weighting is based on color histograms computed in the iHLS color space. Particle computations are parallelized with CUDA framework. The algorithm was tested on various GPU devices: a desktop GPU card, a mobile chipset and two embedded GPU platforms. The processing speed depending on the number...
-
Parallel Background Subtraction in Video Streams Using OpenCL on GPU Platforms
PublicationImplementation of the background subtraction algorithm using OpenCL platform is presented. The algorithm processes live stream of video frames from the surveillance camera in on-line mode. Processing is performed using a host machine and a parallel computing device. The work focuses on optimizing an OpenCL algorithm implementation for GPU devices by taking into account specific features of the GPU architecture, such as memory access,...
-
Performance evaluation of parallel background subtraction on GPU platforms
PublicationImplementation of the background subtraction algorithm on parallel GPUs is presented. The algorithm processes video streams and extracts foreground pixels. The work focuses on optimizing parallel algorithm implementation by taking into account specific features of the GPU architecture, such as memory access, data transfers and work group organization. The algorithm is implemented in both OpenCL and CUDA. Various optimizations of...
-
Mirosław Andrusiewicz prof. dr hab. n. med. i n. o zdr.
PeopleDiplomas, degrees conferred in specific areas ̶ Post-doctoral degree in medical sciences (doctor habilitated) (discipline: medical biology) December 4, 2017; Title of academic achievement: "Analysis of selected genes involved in the control of pathological changes in cells derived from internal female reproductive organs"; Poznan University of Medical Sciences, Faculty of Medicine II; re-viewers: Prof. Katarzyna Ziemnicka,...
-
Multi Queue Approach for Network Services Implemented for Multi Core CPUs
PublicationMultiple core processors have already became the dominant design for general purpose CPUs. Incarnations of this technology are present in solutions dedicated to such areas like computer graphics, signal processing and also computer networking. Since the key functionality of network core components is fast package servicing, multicore technology, due to multi tasking ability, seems useful to support packet processing. Dedicated...
-
Tuning a Hybrid GPU-CPU V-Cycle Multilevel Preconditioner for Solving Large Real and Complex Systems of FEM Equations
PublicationThis letter presents techniques for tuning an accelerated preconditioned conjugate gradient solver with a multilevel preconditioner. The solver is optimized for a fast solution of sparse systems of equations arising in computational electromagnetics in a finite element method using higher-order elements. The goal of the tuning is to increase the throughput while at the same time reducing the memory requirements in order to allow...
-
Parallel multithread computing for spectroscopic analysis in optical coherence tomography
PublicationSpectroscopic Optical Coherence Tomography (SOCT) is an extension of Optical Coherence Tomography (OCT). It allows gathering spectroscopic information from individual scattering points inside the sample. It is based on time-frequency analysis of interferometric signals. Such analysis requires calculating hundreds of Fourier transforms while performing a single A-scan. Additionally, further processing of acquired spectroscopic information...
-
Performance Evaluation of Selected Parallel Object Detection and Tracking Algorithms on an Embedded GPU Platform
PublicationPerformance evaluation of selected complex video processing algorithms, implemented on a parallel, embedded GPU platform Tegra X1, is presented. Three algorithms were chosen for evaluation: a GMM-based object detection algorithm, a particle filter tracking algorithm and an optical flow based algorithm devoted to people counting in a crowd flow. The choice of these algorithms was based on their computational complexity and parallel...
-
Enhanced Remote Control Providing Medical Functionalities
PublicationThis paper presents the enhanced remote control and its role in pervasive healthcare in the home. The device was equipped with health-related measurement modules and a message-processing unit. Preliminary results are presented for monitoring of a pulse, hand tremors, grip forces, and for self evaluation procedures. The interaction of the device with the smart environment is presented and discussed.
-
Research and Analysis of Accuracy of Location Estimation in Inertial Navigation System
PublicationIn the article the research and analysis of digital signal processing and its influence on accuracy of location estimation in developed inertial navigation system was presented. The purpose of the system is to localize moving people in indoor environment. During research a measuring unit for recording selected movement parameters was made. In the article were also described author’s inertial navigation algorithms.
-
Using wavelet techniques for multibeam sonar bathymetry data compression
PublicationMultibeam sonars are widely used in applications like high resolution bathymetry measurements or underwater object imaging. One of the significant problems in multibeam sensing of the marine environment is large amount of data which must be transmitted from the sonar processing unit to an operator station using a limited bit rate channel. For instance, such a situation would be in the case when the multibeam sonar was mounted on...
-
On the compression of multibeam sonar raw bathymetry data
PublicationMultibeam sonars are widely used in applications like high resolution bathymetry measurements or underwater object imaging. One of the significant problems in multibeam sensing of the marine environment is large amount of data which must be transmitted from the sonar processing unit to an operator station using a limited bit rate channel. For instance, such a situation would be in the case when the multibeam sonar was mounted on...