Filters
total: 23188
-
Catalog
- Publications 1978 available results
- Journals 551 available results
- Conferences 24 available results
- Publishing Houses 2 available results
- People 85 available results
- Projects 10 available results
- e-Learning Courses 24 available results
- Events 2 available results
- Open Research Data 20512 available results
displaying 1000 best results Help
Search results for: MEDICAL IMAGE CLASSIFICATION
-
Image Classification Based on Video Segments
PublicationIn the dissertation a new method for improving the quality of classifications of images in video streams has been proposed and analyzed. In multiple fields concerning such a classification, the proposed algorithms focus on the analysis of single frames. This class of algorithms has been named OFA (One Frame Analyzed).In the dissertation, small segments of the video are considered and each image is analyzed in the context of its...
-
Medical Image Dataset Annotation Service (MIDAS)
PublicationMIDAS (Medical Image Dataset Annotation Service) is a custom-tailored tool for creating and managing datasets either for deep learning, as well as machine learning or any form of statistical research. The aim of the project is to provide one-fit-all platform for creating medical image datasets that could easily blend in hospital's workflow. In our work, we focus on the importance of medical data anonimization, discussing the...
-
Dependable Integration of Medical Image Recognition Components
PublicationComputer driven medical image recognition may support medical doctors in the diagnosis process, but requires high dependability considering potential consequences of incorrect results. The paper presentsa system that improves dependability of medical image recognition by integration of results from redundant components. The components implement alternative recognition algorithms of diseases in thefield of gastrointestinal endoscopy....
-
Image of Poland as perceived by German and British medical tourists
Publication -
MEDICAL TOURISM POTENTIAL OF CENTRAL AND EASTERN EUROPE: ATTEMPT AT CLASSIFICATION
Publication -
Data augmentation for improving deep learning in image classification problem
PublicationThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublicationRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Vehicle type recognition: a case study of MobileNetV2 for an image Classification task
PublicationThe goal of the research was to demonstrate the full data science lifecycle through a use case of the MobileNetv2 model for vehicle image Classification task using various validation and test sets, each with different difficulty level. Diverse model variations were employed, each designed to recognize images of ground vehicles and classify them into one of five possible classes: car, truck, motorcycle, bicycle, or bus. In terms...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
High Quality Medical Image-Guides By Mosaic-Assembling Optical Fibre Technology
Publication -
Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem
PublicationWe are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Combined method of multibeam sonar signal processing and image analysis for seafloor classification
PublicationThe combined approach to seafloor characterisation was investigated. It relies on calculation of several descriptors (parameters) related to seabed type using three types of multibeam sonar data obtained during seafloor sensing: 1) the grey-level sonar images (echograms) of seabed, 2) the 3D model of the seabed surface which consists of bathymetric data, 3) the set of time domain bottom echo envelopes received in the consecutive...
-
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
PublicationSemantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...
-
Analysis of Image Preprocessing and Binarization Methods for OCR-Based Detection and Classification of Electronic Integrated Circuit Labeling
PublicationAutomatic recognition and classification of electronic integrated circuits based on optical character recognition combined with the analysis of the shape of their housings are essential to machine vision methods supporting the production of electronic parts, especially small-volume ones in the through-hole technology, characteristic of printed circuit boards. Since such methods utilize binary images, applying appropriate image...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublicationSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublicationCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Акустическое изображение омонима этнического языка как входной элемент формальной классификации межъязыковой омонимии [The acoustic image of ethnic homonyms as an input element in formal classification of interlinguistic homonymy]
Publication -
Акустическое изображение омонима этнического языка как входной элемент формальной классификации межъязыковой омонимии [The acoustic image of ethnic homonyms as an input element in formal classification of interlinguistic homonymy]
Publication -
MEDICAL IMAGE ANALYSIS
Journals -
Medical Image Computing and Computer-Assisted Intervention
Conferences -
Instrument detection and pose estimation with rigid part mixtures model in video-assisted surgeries
PublicationLocalizing instrument parts in video-assisted surgeries is an attractive and open computer vision problem. A working algorithm would immediately find applications in computer-aided interventions in the operating theater. Knowing the location of tool parts could help virtually augment visual faculty of surgeons, assess skills of novice surgeons, and increase autonomy of surgical robots. A surgical tool varies in appearance due to...
-
Sequelae of surgical and medical procedures as the cause of abnormal reaction of the patient, or of later complication, without mention of misadventure at the time of the procedure - Male, 49 - Tissue image [6260730021886091]
Open Research DataThis is the histopathological image of CONNECTIVE, SUBCUTANEOUS AND OTHER SOFT TISSUES tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Sequelae of surgical and medical procedures as the cause of abnormal reaction of the patient, or of later complication, without mention of misadventure at the time of the procedure - Male, 49 - Tissue image [6260730021884251]
Open Research DataThis is the histopathological image of CONNECTIVE, SUBCUTANEOUS AND OTHER SOFT TISSUES tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Sequelae of surgical and medical procedures as the cause of abnormal reaction of the patient, or of later complication, without mention of misadventure at the time of the procedure - Male, 49 - Tissue image [6260730021885141]
Open Research DataThis is the histopathological image of CONNECTIVE, SUBCUTANEOUS AND OTHER SOFT TISSUES tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Sequelae of surgical and medical procedures as the cause of abnormal reaction of the patient, or of later complication, without mention of misadventure at the time of the procedure - Male, 49 - Tissue image [6260730021884451]
Open Research DataThis is the histopathological image of CONNECTIVE, SUBCUTANEOUS AND OTHER SOFT TISSUES tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Sequelae of surgical and medical procedures as the cause of abnormal reaction of the patient, or of later complication, without mention of misadventure at the time of the procedure - Male, 49 - Tissue image [6260730021882191]
Open Research DataThis is the histopathological image of CONNECTIVE, SUBCUTANEOUS AND OTHER SOFT TISSUES tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublicationIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
Mariusz Kaczmarek dr hab. inż.
PeopleReceived M.Sc., Eng. in Electronics in 1995 from Gdansk University of Technology, Ph.D. in Medical Electronics in 2003 and habilitation in Biocybernetics and Biomedical Engineering in 2017. He was an investigator in about 13 projects receiving a number of awards, including four best papers, practical innovations (7 medals and awards) and also the Andronicos G. Kantsios Award and Siemens Award. Main research activities: the issues...
-
An Overview of the Development of a Real-Time System for Endoscopic Video Classification
PublicationThe article presents the results of improving endoscopic image classification algorithms in an effort towards applying them in a real-time diagnosis supporting system. Methods for the detection and removal of personal data are presented and discussed. The currently developed recognition algorithms have been improved in terms of accuracy and performance to make them suitable for a real-life implementation. Their test results are...
-
Piotr Szczuko dr hab. inż.
PeoplePiotr Szczuko received his M.Sc. degree in 2002. His thesis was dedicated to examination of correlation phenomena between perception of sound and vision for surround sound and digital image. He finished Ph.D. studies in 2007 and one year later completed a dissertation "Application of Fuzzy Rules in Computer Character Animation" that received award of Prime Minister of Poland. His interests include: processing of audio and video, computer...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublicationBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...
-
A Mammography Data Management Application for Federated Learning
PublicationThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublicationMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublicationDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
The Hough transform in the classification process of inland ships
PublicationThis article presents an analysis of the possibilities of using image processing methods for feature extraction that allows kNN classification based on a ship’s image delivered from an on-water video surveillance system. The subject of the analysis is the Hough transform which enables the detection of straight lines in an image. The recognized straight lines and the information about them serve as features in the classification...
-
Systematic approach to binary classification of images in video streams using shifting time windows
Publicationin the paper, after pointing out of realistic recordings and classifications of their frames, we propose a new shifting time window approach for improving binary classifications. We consider image classification in tewo steps. in the first one the well known binary classification algorithms are used for each image separately. In the second step the results of the previous step mare analysed in relatively short sequences of consecutive...
-
Objects classification based on their physical sizes for detection of events in camera images
PublicationIn the paper, a method of estimation of the physical sizes of the objects tracked in the video surveillance system, and a simple module for object classification based on the estimated physical sizes, are presented. The results of object classification are then used for automatic detection of various types of events in the camera image.
-
Deep convolutional neural network for predicting kidney tumour malignancy
PublicationPurpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...
-
Developmental odontogenic cysts - Male, 45 - Tissue image [6290730011491911]
Open Research DataThis is the histopathological image of GUM tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: VS200 Olympus slide scanner (20x magnification) and saved to DICOM format.
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublicationThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Analyzing the Impact of Simulated Multispectral Images on Water Classification Accuracy by Means of Spectral Characteristics
PublicationRemote sensing is widely applied in examining the parameters of the state and quality of water. Spectral characteristics of water are strictly connected with the dispersion of electromagnetic radiation by suspended matter and the absorp-tion of radiation by water and chlorophyll a and b.Multispectral sensor ALI has bands within the ranges of electromagnetic radia-tion: blue and infrared, absent in sensors such as Landsat, SPOT,...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublicationIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Adrenal gland, unspecified - Male, 1 - Tissue image [7220729599723171]
Open Research DataThis is the histopathological image of ADRENAL GLAND tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Adrenal gland, unspecified - Male, 1 - Tissue image [7220729599714301]
Open Research DataThis is the histopathological image of ADRENAL GLAND tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Adrenal gland, unspecified - Male, 1 - Tissue image [7220729599723671]
Open Research DataThis is the histopathological image of ADRENAL GLAND tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Adrenal gland, unspecified - Male, 1 - Tissue image [7220729599723331]
Open Research DataThis is the histopathological image of ADRENAL GLAND tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.
-
Adrenal gland, unspecified - Male, 1 - Tissue image [7220729599717481]
Open Research DataThis is the histopathological image of ADRENAL GLAND tissue sample obtained in Medical University Gdańsk and deposited in ZMDL-GUMED. The sample image was taken using: Pannoramic 250 3DHistech slide scanner (20x magnification) and saved to DICOM format.