Search results for: boron-doped diamond (bdd) nanocrystalline sheets electrical conductivity heterojunction graphene
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
The electrical, morphological and optical properties of heavily boron-doped diamond sheets as a function of methane concentration in the gas phase
PublicationBoron-doped diamonds (BDD) are known for their excellent properties such as high thermal conductivity, high mobility, low absorption in visible light, and biocompatibility. In this work, we investigated the electrical, morphological and optical properties of heavily boron-doped diamond thin sheets as a function of methane concentration in the gas phase. Free-standing diamond sheets were fabricated using a microwave plasma-assisted...
-
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes
PublicationFabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. Nanocrystalline boron doped -diamond (B-NCD) films were deposited using Microwave Plasma Assisted Chemical Vapour Deposition (MW PA CVD) method. The variation of B-NCD morphology, structure and optical parameters were particularly investigated. The use of truncated...
-
Electrical characterization of diamond/boron doped diamond nanostructures for use in harsh environment applications
PublicationThe polycrystalline boron doped diamond (BDD) shows stable electrical properties and high tolerance for harsh environments (e.g. high temperature or aggressive chemical compounds) comparing to other materials used in semiconductor devices. In this study authors have designed electronic devices fabricated from non-intentionally (NiD) films and highly boron doped diamond structures. Presented semiconductor devices consist of highly...
-
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
PublicationWe report on the novel composite nanostructures based on boron-doped diamond thin film grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2...
-
Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode
PublicationDirect synthesis of nano-structured carbon hybrid consisting of vertically aligned carbon nanograss on top of boron-doped nanocrystalline diamond is demonstrated and the carbon hybrid is further applied as an electrode material for the fabrication of supercapacitor. The hybrid film combines the dual advantages of sp2 (carbon nanograss) and sp3 (nanocrystalline diamond) bonded carbon, possessing not only the excellent electrical...
-
Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles
PublicationElectrode fouling is a major issue in biological detection due to the adhesion of the protein itself and polymerization of biomolecules on the electrode surface, impeding the electron transfer ability and decreasing the current response. To overcome this issue, the use of anti-fouling material, especially boron-doped diamond (BDD) electrode, is an alternative way. However, the electrocatalytic activity of BDD is inadequate compared...
-
Nitrogen-Incorporated Boron-Doped Nanocrystalline Diamond Nanowires for Microplasma Illumination
PublicationThe origin of nitrogen-incorporated boron-doped nanocrystalline diamond (NB-NCD) nanowires as a function of substrate temperature (Ts) in H2/CH4/B2H6/N2 reactant gases is systematically addressed. Because of Ts, there is a drastic modification in the dimensional structure and microstructure and hence in the several properties of the NB-NCD films. The NB-NCD films grown at low Ts (400 °C) contain faceted diamond grains. The morphology...
-
Hemocompatibility of nanocrystalline diamond layers
Open Research DataThe biocompatibility of the diamond films were investigated with whole human blood samples. Blood used in this study was drawn from 10 healthy human patients of different age, sex, and blood group. A 2 ml samples were collected into standard tubes with EDTA anticoagulation agent. Blood was used within 6 hours from the collection time. A reference blood...
-
Local impedance imaging of boron-doped polycrystalline diamond thin films
PublicationLocal impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 1016 to 2 × 1021 atoms cm−3. The BDD films displayed microcrystalline structure,...
-
Scanning electron microscopy (SEM) images of boron-doped diamond thin films at poly(lactic acid)
Open Research DataThe dataset contains the photos obtained by scanning electron microscope(SEM), revealing the surface morphology and cross-section of boron-doped diamond electrodes on commercially available graphene-doped polylactide acid. The boron doping level expressed as the [B]/[C] ratio in the gas phase for these studies was 500 and 10,000 ppm. The top views of...
-
Nitrogen-incorporated boron-doped diamond films for enhanced electrochemical supercapacitor performance
PublicationThe electrochemical (EC) supercapacitor, known for its rapid charging, reliability, and versatile applications, demands optimized electrode characteristics and an understanding of their electrochemical behaviour. Although boron-doped diamond (BDD) holds promise as a supercapacitor electrode, a crucial gap exists in comprehending its material behaviour under specific growth conditions. Here, nitrogen-incorporated BDD (N-BDD) films...
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublicationSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
The scanning electron microscopy (SEM) studies of heavy boron-doped diamond oxidation under high-temperature
Open Research DataThe dataset contains the results of scanning electron microscopy (SEM) images of heavy boron-doped diamond (BDD) electrodes subjected to high-temperature oxidation in a furnace at 600 Celsius. The micrographs reveal the material decomposition of BDD grains due to high temperature.
-
Electrochemical studies of Boron-Doped Diamond enriched Laser Induced Graphene structures
Open Research DataThis dataset contains electrochemical studies aimed to evaluate the capability of the utilization of laser-induced graphene (LIG) with incorporated boron-doped diamond nanowall (BDNW) hybrid nanostructures for microsupercapacitors. Selected results from this dataset were published in Advanced Functional Materials journal: https://doi.org/10.1002/adfm.202206097
-
Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices
PublicationThere is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity....
-
The scanning spreading resistance microscopy (SSRM) studies of heavy boron-doped diamond oxidation under high-temperature
Open Research DataThe dataset contains the results of scanning spreading resistance microscopy (SSRM) of heavy boron-doped diamond (BDD) electrodes subjected to high-temperature oxidation in a furnace at 600 Celsius. The micrographs reveal the local change of electric properties at certainly crystallographic orientations of BDD grains and at the grain boundaries due...
-
Topography studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains topography examination of SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublicationCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Electrochemical studies for screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains electrochemical examination of SPCE paste and SPCE containing boron-doped diamond BDD foils. The studies include kinetics analyses with cyclic voltammetry and electrochemical impedance spectroscopy with different redox probes: hexacyanoferrate(III) and Hexaammineruthenium(III) and potentiostatic open circuit potential at different...
-
Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity
PublicationThe electrochemical active surface area (EASA) of polycrystalline boron-doped diamond (BDD) electrodes is heterogeneous and can be affected by numerous factors. There is a strong need for proper consideration of BDD heterogeneity in order to improve this material's range of application in electrochemistry. Localized changes in surface termination due to the influence of oxidation agent result in increased surface resistance. The...
-
Chemical and structural studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains chemical analyses and structural studies by XPS and Raman spectroscopy, carried out for SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points for XPS analysis mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Automated measurement method for assessing thermal-dependent electronic characteristics of thin boron-doped diamond-graphene nanowall structures
PublicationThis paper investigates the electrical properties of boron-doped diamond-graphene (B:DG) nanostructures, focusing on their semiconductor characteristics. These nanostructures are synthesized on fused silica glass and Si wafer substrates to compare their behaviour on different surfaces. A specialized measurement system, incorporating Python-automated code, was developed for an in-depth analysis of electronic properties under various...
-
Tuning the Laser-Induced Processing of 3D Porous Graphenic Nanostructures by Boron-Doped Diamond Particles for Flexible Microsupercapacitors
PublicationCarbon (sp3)-on-carbon (sp2) materials have the potential to revolutionize fields such as energy storage and microelectronics. However, the rational engineering and printing of carbon-on-carbon materials on flexible substrates remains a challenge in wearable electronics technology. This study demon-strates the scalable fabrication of flexible laser-induced graphene (LIG)-boron doped diamond nanowall (BDNW) hybrid nanostructures...
-
Performance of Haemophilus influenzae impedimetric biosensors based on screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains electrochemical impedance spectroscopy studies of SPCE electrodes containing boron-doped diamond BDD foils and functionalized towards detection of Protein D and Haemophilus influenzae.
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublicationBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
The electrochemical studies of thin boron-doped diamond films deposited at conductive poly(lactic acid) 3D prints
Open Research DataThe dataset contains the electrochemical characteristics of the electrodes composed of thin boron-doped diamond films coated on commercially available graphene-doped polylactide acid. The boron doping level expressed as the [B]/[C] ratio in the gas phase for these studies was 500 and 10,000 ppm.
-
Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate
PublicationNanomaterials and assemblies of the aforementioned into complex architectures constitute an opportunity to design efficient and selective solutions to wide spread and emerging environmental issues. The limited disposal of organic matter in modern landfills generates extremely concentrated leachates characterised by high concentrations of refractory compounds. Conventional biochemical treatment methods are unsuitable, while advanced...
-
Conductive printable electrodes tuned by boron-doped nanodiamond foil additives for nitroexplosive detection
PublicationAn efficient additive manufacturing-based composite material fabrication for electrochemical applications is reported. The composite is composed of commercially available graphene-doped polylactide acid (G-PLA) 3D printouts and surface- functionalized with nanocrystalline boron-doped diamond foil (NDF) additives. The NDFs were synthesized on a tantalum substrate and transferred to the 3D-printout surface at 200 °C. No other electrode...
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublicationAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
The BDD electrodes wettability modification by anodic polarization treatment
Open Research DataThe dataset contains the raw images, photographs obtained for the contact angle measurement at the surface of the boron-doped diamond (BDD) electrode. The measurements were carried out on after potentiodynamic polarization procedure, at various anodic polarization scan range (no polarization - HTBDD; 1.0 V; 1.4 V; 1.9 V; 2.5 V vs Ag|AgCl, scan rate...
-
Structural and electronic properties of diamond-composed heterostructures
PublicationDiamond is a promising material for 21st century electronics due to its high thermal and electronic conductivity, biocompatibility, chemical stability, high wear resistance, and possibility of doping. However, the semiconductor properties of diamond, especially free-standing films, have not been fully explored. Nor have their integration with polymers and fragile materials and their applications as electronic components. In this...
-
Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes
PublicationIn this study the efficiency of electrochemical oxidation of aromatic pollutants, such as reactive dyes, at boron-doped diamond on silicon (Si/BDD) electrodes was investigated. The level of [B]/[C] ratio which is effective for the degradation and mineralization of selected aromatic pollutants, and the impact of [B]/[C] ratio on the crystalline structure, layer conductivity and relative sp3/sp2 coefficient of a BDD electrode were...
-
A Closed Bipolar Electrochemical Cell for the Interrogation of BDD Single Particles: Electrochemical Advanced Oxidation
PublicationA closed bipolar electrochemical cell containing two conductive boron-doped diamond (BDD) particles of size 250 – 350 m, produced by high-pressure high-temperature (HPHT) synthesis, has been used to demonstrate the applicability of single BDD particles for electrochemical oxidative degradation of the dye, methylene blue (MB). The cell is fabricated using stereolithography 3D printing and the BDD particles are located at either...
-
High resolution XPS analysis of BDD electrode functionalization steps towards SARS-CoV-2 detection
Open Research DataThis dataset contains the results of the high-resolution XPS analyses of a set of boron-doped diamond (BDD) electrodes after consecutive functionalization steps toward anchoring of a receptor capable of SARS-CoV-2 virus detection. The analysis was carried out in the binding energy range of C1s, N1s, O1s, Ni2p3/2. The measurements were carried out on...
-
Enhanced susceptibility of SARS-CoV-2 spike RBD protein assay targeted by cellular receptors ACE2 and CD147: Multivariate data analysis of multisine impedimetric response
PublicationSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of spike protein to the host cell surface-expressing angiotensin-converting enzyme 2 (ACE2) or by endocytosis mediated by extracellular matrix metalloproteinase inducer (CD147). We present extended statistical studies of the multisine dynamic electrochemical impedance spectroscopy (DEIS) revealing interactions between Spike RBD and...
-
The electrochemical response to BDD electrode functionalization with CD147 receptor
Open Research DataThis dataset contains the results of the electrochemical impedance spectroscopy (EIS) measurements of the boron-doped diamond (BDD) electrode functionalization with CD147 receptor. The functionalized electrode was then used for the electrochemical detection of the SARS-CoV-2 virus S1 protein.
-
The electrochemical response to BDD electrode functionalization with ACE2 receptor
Open Research DataThis dataset contains the results of the electrochemical impedance spectroscopy (EIS) measurements of the boron-doped diamond (BDD) electrode functionalization with ACE2 receptor. The functionalized electrode was then used for the electrochemical detection of the SARS-CoV-2 virus S1 protein.
-
The electrochemical response to BDD electrode functionalization with IgG2B receptor
Open Research DataThis dataset contains the results of the electrochemical impedance spectroscopy (EIS) measurements of the boron-doped diamond (BDD) electrode functionalization with IgG2B receptor. The functionalized electrode was then used for the electrochemical detection of the SARS-CoV-2 virus S1 protein.
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Determination of Chemical Oxygen Demand (COD) at Boron-doped Diamond (BDD) Sensor by Means of Amperometric Technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Studies on optical transmittance of boron-doped nanocrystalline diamond films
PublicationThickness is one of the most important parameters in many applications using thin layers. This article describes thickness determination of a boron-doped nanocrystalline diamond (NCD) grown on fused silica glass. A spectroscopic measurement system has been used. A high refractive index (2.3 at 550nm) was achieved for NCD films. The thickness of NCD samples has been determined from the transmission spectrum.
-
Optical properties of boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry
PublicationThe optical properties of boron-doped nanocrystalline diamond films, coated using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system, were analyzed by spectroscopic ellipsometry. Diamond films were deposited on silicon substrates. The ellipsometry data (refractive index (n(λ)), extinction coefficient (k(λ)) were modeled using dedicated software. Evolution of the optical structure with boron doping was observed...
-
Boron-Doped Diamond/GaN Heterojunction—The Influence of the Low-Temperature Deposition
PublicationWe report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition....
-
N-doped graphene quantum dot-decorated MOF-derived yolk-shell ZnO/NiO hybrids to boost lithium and sodium ion battery performance
PublicationSurface engineering at the nanoscale to obtain robust interface between metal oxides and quantum dots is essential for improving the performance and stability of battery materials. Herein, we designed and prepared novel N-doped graphene quantum dot-modified ZnO/NiO anode materials with a well-defined yolk-shell structure for lithium and sodium-ion batteries. NG QDs were assembled on the ZnO/NiO microspheres using three different...
-
Unraveling the role of boron dimers in the electrical anisotropy and superconductivity in boron-doped diamond
PublicationWe use quantum mechanics (QM) to determine the states formed by B dopants in diamond. We find that isolated B sites prefer to form BB dimers and that the dimers pair up to form tetramers (BBCBB) that prefer to aggregate parallel to the (111) surface in the <110> direction, one double layer below the H-terminated surface double layer. These tetramers lead to metallic character (Mott metal Insulator Transition) with holes in the...
-
The electrochemical determination of isatin at nanocrystalline boron-doped diamond electrodes: stress monitoring of animals
PublicationUltra-thin nanocrystalline boron-doped diamond electrodes (B:NCD) were used for the electrochemical determination of isatin in dog urine samples using cyclic voltammetry and square wave voltammetry in a phosphate buffer saline, pH = 7.2. No additional modification or pretreatment of the electrode surface was required in this approach, being of high importance for the facile detection procedure. The increase of the peak current...
-
3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode
PublicationSynthesis of stable hybrid carbon nanostructure for high-performance supercapacitor electrode with long life-cycle for electronic and energy storage devices is a real challenge. Here, we present a one-step synthesis method to produce conductive boron-doped hybrid carbon nanowalls (HCNWs), where sp2-bonded graphene has been integrated with and over a three-dimensional curved wall-like network of sp3-bonded diamond. The spectroscopic...