Filters
total: 24136
filtered: 627
-
Catalog
- Publications 6740 available results
- Journals 429 available results
- People 254 available results
- Inventions 31 available results
- Projects 28 available results
- Laboratories 2 available results
- Research Teams 4 available results
- Research Equipment 1 available results
- e-Learning Courses 1150 available results
- Events 23 available results
- Open Research Data 15474 available results
Chosen catalog filters
Search results for: materialy beszmarowe
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of water cooled materia
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Tensile curve of E grade steel for shipbuilding
Open Research DataIn the shipbuilding industry, the risk of brittle fractures developing in constructions is limited by employing certified materials of specific impact strength, determined using the Charpy method (for a given design temperature) and by exercising control over the welding processes (technology qualification, supervision of production, tests of non-destructive...
-
The assessment of microbiological antimicrobial properties of PE film loaded with nanozinc filler
Open Research DataThe dataset contains the results of a single series of determinations of the antimicrobial properties against E. coli and S. aureus of polyethylene films containing the nanozinc filler.
-
Thermal properties. DSC analysis of poly(xylitol sebacate-co-butylene sebacate) PXBS.
Open Research DataIn this work, a bio-based copolyester with good mechanical properties was synthesized andcharacterized in terms of structure, main properties and biodegradability Determining the chemicalstructure of such materials is important to understand their behavior and properties. Performingan extraction of insoluble cross-linked polymer using di erent solvents...
-
Fourier transform infrared spectroscopy (FTIR) of pre- PXBS (0 h) and PXBS during the crosslinking process (24 h–288 h)
Open Research DataThe goal of this research was developing biodegradable and biocompatibile xylitol-based copolymers with improved mechanical properties, and investigating the change in their thermal and chemical properties withprogress of the cross-linking process. Using a raw material of natural origin such as xylitol, a prepolymer wasobtained by esterification and...
-
Influence of novolac phenolic resins and butadiene rubbers on airborne wear particles emission from train brake friction materials against steel brake discs with roughness of Ra2.5
Open Research DataThree train brake materials based on straight or resorcinol-modified novolac phenolic resin and nitrile or styrene-butadiene rubber were tested during pin-on-disc tribological tests. Each material was tested and retested at 9 different friction regimes with various contact pressure values (0.33, 0.66 and 1 MPa) and various sliding velocity values (0.6,...
-
Complex modulus of Cement Bitumen Treated Material Mixture C3E4 cores obtained from the field section (28-365 days of curing at the field and later in laboratory at 20C)
Open Research DataDataset presents data of complex modulus determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement, 4% emulsion (C3E4). Mixture was designed according to Polish requirements for the base course of pavement. Specimen were obtained from the field at 28, 180, 270 and 365 days after compaction....
-
Deflection measurement of field section with pavement with base course made of Cement Bitumen Treated Material Mixture C3E4 (28, 180, 270, 365 days after compaction)
Open Research DataDataset presents data of deflections determined for pavement with base course made of cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement, 4% emulsion (C3E4). Mixture was designed according to Polish requirements for the base course of pavement. Mixture was mixed in stationary plant and compacted...
-
Morphology and conductivity investigations of nickel-molybdenium alloy by means of Scanning Spreading Resistance Microscopy
Open Research DataElectrolytically deposited nickel-molybdenum alloys are interesting materials because of their high corrosion resistance and low over-potential for hydrogen evolution. Despite many studies devoted to the deposition of these alloys, the mechanism of co-deposition is not fully understood [1]. The aim of the research was to preserve the electrochemically...
-
Imaging of morphological and physicochemical changes occuring in the structure of austenitic steel due to the thermal sensitization
Open Research DataIn polycrystalline materials, grain boundaries are always where phenomena such as surface diffusion, sedimentation and corrosion occur. They have a significant impact on the macroscopic properties of the construction material [1]. In addition to inhomogeneities such as manganese sulphide inclusions formed during the metallurgical process, interfacial...
-
Data from terrestrial laser scanning: The Forge in the district of Gdańsk Orunia
Open Research DataWithin the frames of the use of terrestrial laser scanning we find numerous examples of registration of building facilities, including also historical and valuable in their culture. Data were acquired using a Leica Geosystems C10 laser scanner. Data embrace blacksmith forges a historic building located in Gdańsk Orunia, 10 Goscinna Street. Scanning...
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
Scanning electron microscopy studies of the weld decay on SS 304 of water supply pipeline
Open Research DataThis dataset contains micrographs made with scanning electron microscope (SEM) Hitachi S-3400N, of the weld decay for water supply system pipelines made of AISI 304 stainless steel. Within the dataset one can see the different corrosion mechanisms. The micrographs were made after the Strauss test (excluding pictures labeled as pits_in_HAZ, done without...
-
Structure of ammonium vanadate synthesis by LPE-IonEx method
Open Research DataThe DataSet contains the XRD patterns, FTIR spectra of NH4VO3 crystals with different morphology obtained by the LPE-IonEx method.
-
X-ray diffraction spectra of the NiCo2O4 modified by carbon
Open Research DataThis dataset comprises XRD results for NiCo2O4 modified with carbon, varying according to the amount of carbon. In this context, the XRD data provide insights into the crystalline structure and phase composition of the NiCo2O4 material as it is modified with varying quantities of carbon. This investigation is valuable for understanding how the presence...
-
Identification of intermetallic phases in the structure of austenitic steel with use of Scanning Kelvin Probe Microscopy
Open Research DataDelta ferrite is formed in austenitic steels during the solidification of the alloy and its welds. It can also occur as a stable phase in any temperature range in high-alloy austenitic-ferritic steels. Depending on the amount, it can change into gamma and sigma phases and into ferrite with variable chromium content. The main role of delta ferrite in...
-
XPS (X-ray photoelectron spectroscopy) spectra and high-resolution spectra of C 1 s and O 1 s of the PCMCA-X (potassium citrate derived porous carbon materials obtained at various temperatures)
Open Research DataThese data include XPS full spectra and high-resolution spectra of C 1 s and O 1 s of the (potassium citrate derivedporous carbon material obtained at 700 °C), PCMCA-800 (potassium citrate derived porous carbon material obtained at 800 °C), PCMCA (potassium citrate derived porous carbon material obtained at 900 °C). The elemental composition on the...
-
AFM visualization of Mg alloy surface modification
Open Research DataMagnesium alloys with additives improving their mechanical properties are valued as materials with low density and elasticity coefficient. Additionally, their biocompatibility and biodegradability make them interesting in prosthetic applications. However, the last of these features, valuable in medicine, contradicts the industrial needs for the described...
-
Ball on disk test AL(rf.)-Al2O3-r25
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 not treated (reference).
-
Ball on disk test AL(rf.)-Al2O3-r15
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 not treated (reference).
-
Ball on disk test AT4_11-Al2O3-r25
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT4_11).
-
Ball on disk test AT4_41-Al2O3-r25
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT4_41).
-
Ball on disk test AT3_2-Al2O3-r15
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 TiN powder injected (AT3_2).
-
Ball on disk test AT3_21-Al2O3-r25
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT3_21).
-
Ball on disk test AT4_1-Al2O3-r15
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 TiN powder injected (AT4_1).
-
Ball on disk test AW4_11-Al2O3-r25
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 WC powder injected (AW4_11).
-
Ball on disk test AW4_4-Al2O3-r15
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 WC powder injected (AW4_4).
-
Ball on disk test AW4_1-Al2O3-r15
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 WC powder injected (AW4_1).
-
Ball on disk test AT4_4-Al2O3-r15
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 TiN powder injected (AT4_4).
-
Ball on disk test AW4_41-Al2O3-r25
Open Research DataHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 WC powder injected (AW4_41).
-
The effect of roasting beetroot and chicory on the anti-oxidative activity of their extracts
Open Research DataThe eThe data set presents the results of the assessment of the impact of roasting raw materials in the form of beetroot and chicory on their antioxidant activity measured by the standard ABTS and DPPH radical tests. The numerical results were compared with the visual assessment of the roasted raw materials. The obtained results confirmed the increase...
-
Poland’s energy dependence - economic context
Open Research DataPoland does not have vast resources of non-renewable energy and no nuclear power plant, therefore the issue of the energy dependence of the state, which affects the level of energy security of the country, is an extremely important factor. It depends on both the volume of imports of energy raw materials and the policy of diversification of sources of...
-
Kinetics of cyclohexane removal by Candida subhashii and Fusarium solani
Open Research DataDataset presents cyclohexane biodegradation in gas phase using two species of microorganisms: Candida Subhashii and Fusarium solani. Biodegradation was carried out in sealed chambers with a capacity of 1000 ml. In each of them there are two discs inhabited with microorganisms, made of polyurethane foam, 80 mm in diameter and 20 mm thick.