Filtry
wszystkich: 1528
-
Katalog
- Publikacje 1240 wyników po odfiltrowaniu
- Czasopisma 48 wyników po odfiltrowaniu
- Konferencje 69 wyników po odfiltrowaniu
- Osoby 63 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 34 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 67 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, CNN, NEURAL NETWORKS, OPTIMIZATION ALGORITHMS
-
Influence of accelerometer signal pre-processing and classification method on human activity recognition
PublikacjaA study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublikacjaThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych
PublikacjaW artykule zaprezentowano wybrane metod sztucznej inteligencji do zwiększania efektywności bankowych systemów informatycznych. Wykorzystanie metody wektorów wspierających czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwia znaczący wzrost konkurencyjności banku poprzez dodanie nowych funkcjonalności. W rezultacie możliwe jest także złagodzenie skutków kryzysu finansowego.
-
Adaptive CAD-Model Construction Schemes
PublikacjaTwo advanced surrogate model construction techniques are discussed in this paper. The models employ radial basis function (RBF)interpolation scheme or artificial neural networks (ANN) with a new training algorithm. Adaptive sampling technique is applied withrespect to all variables. Histograms showing the quality of the models are presented. While the quality of RBF models is satisfactory, theperformance of the ANN models obtained...
-
Paweł Burdziakowski dr inż.
Osobydr inż. Paweł Burdziakowski jest specjalista w zakresie fotogrametrii i teledetekcji lotniczej niskiego pułapu, nawigacji morskiej i lotniczej. Jest również licencjonowanym instruktorem lotniczym oraz programistą. Głównymi obszarami zainteresowania jest fotogrametria cyfrowa, nawigacja platform bezzałogowych oraz systemy bezzałogowe, w tym lotnicze, nawodne, podwodne. Prowadzi badania w zakresie algorytmów i metod poprawiających...
-
Artificial Intelligence in Medicine
Konferencje -
Podstawy uczenia maszynowego AI
Kursy OnlinePodstawy uczenia maszynowego. Machine Learning fundamentals.
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublikacjaResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublikacjaResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Online sound restoration system for digital library applications.
PublikacjaAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Metal–Organic Frameworks (MOFs) for Cancer Therapy
PublikacjaMOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic...
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublikacjaThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
The KLC Cultures' Synergy Power, Trust, and Tacit Knowledge for Organizational Intelligence
PublikacjaThis paper examines the impact of knowledge, learning, and collaboration culturessynergy (the KLC approach) on organizational adaptability. The SEM analysis method was applied to verify the critical assumption of this paper: that the KLC approach and trust support knowledge-sharing processes (tacit and explicit) and are critical for organizational intelligence activation.Specifically, the empirical evidence, based on a 640-case...
-
Neural network agents trained by declarative programming tutors
PublikacjaThis paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...
-
A New, Reconfigurable Circuit Offering Functionality of AND and OR Logic Gates for Use in Algorithms Implemented in Hardware
PublikacjaThe paper presents a programmable (using a 1-bit signal) digital gate that can operate in one of two OR or AND modes. A circuit of this type can also be implemented using conventional logic gates. However, in the case of the proposed circuit, compared to conventional solutions, the advantage is a much smaller number of transistors necessary for its implementation. Circuit is also much faster than its conventional counterpart. The...
-
Bayesian Optimization for solving high-frequency passive component design problems
PublikacjaIn this paper, the performance of the Bayesian Optimization (BO) technique applied to various problems of microwave engineering is studied. Bayesian optimization is a novel, non-deterministic, global optimization scheme that uses machine learning to solve complex optimization problems. However, each new optimization scheme needs to be evaluated to find its best application niche, as there is no universal technique that suits all...
-
Human Feedback and Knowledge Discovery: Towards Cognitive Systems Optimization
PublikacjaCurrent computer vision systems, especially those using machine learning techniques are data-hungry and frequently only perform well when dealing with patterns they have seen before. As an alternative, cognitive systems have become a focus of attention for applications that involve complex visual scenes, and in which conditions may vary. In theory, cognitive applications uses current machine learning algorithms, such as deep learning,...
-
Latin-American Algorithms, Graphs and Optimization Symposium
Konferencje -
Computer-Aided Detection of Hypertensive Retinopathy Using Depth-Wise Separable CNN
PublikacjaHypertensive retinopathy (HR) is a retinal disorder, linked to high blood pressure. The incidence of HR-eye illness is directly related to the severity and duration of hypertension. It is critical to identify and analyze HR at an early stage to avoid blindness. There are presently only a few computer-aided systems (CADx) designed to recognize HR. Instead, those systems concentrated on collecting features from many retinopathy-related...
-
Algorytmy Optymalizacji Dyskretnej - ed. 2021/2022
Kursy OnlineIn real-world applications, many important practical problems are NP-hard, therefore it is expedient to consider not only the optimal solutions of NP-hard optimization problems, but also the solutions which are “close” to them (near-optimal solutions). So, we can try to design an approximation algorithm that efficiently produces a near-optimal solution for the NP-hard problem. In many cases we can even design approximation algorithms...
-
Comparison and Analysis of Service Selection Algorithms
PublikacjaIn Service Oriented Architecture, applications are developed by integration of existing services in order to reduce development cost and time. The approach, however, requires algorithms that select appropriate services out of available, alternative ones. The selection process may consider both optimalization requirements, such as maximalization of performance, and constraint requirements, such minimal security or maximum development...
-
The Neural Knowledge DNA Based Smart Internet of Things
PublikacjaABSTRACT The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. Smartness, however, remains a substantial challenge for IoT applications. Recent advances in networked sensor technologies, computing, and machine learning have made it possible for building new smart IoT applications. In this paper, we propose a novel approach: the Neural Knowledge DNA based Smart Internet...
-
Marek Biziuk prof. dr hab. inż.
OsobyUr. 25.06.1947 w Sokółce, Województwo Podlaskie. W latach 1964-1969 studiował na Wydziale Chemicznym PG. Stopień doktora nauk technicznych uzyskał w 1977 r., a stopień doktora habilitowanego nauk chemicznych w zakresie chemia uzyskał na Wydziale Chemicznym PG 24.05.1995 r. Tytuł naukowy profesora nauk chemicznych uzyskał na Wydz. Chemicznym PG 6.04.2001 r. Członek Komitetu Chemii Analitycznej PAN od 2008, członek Zespołu ds....
-
Between therapy effect and false-positive result in animal experimentation
PublikacjaDespite the animal models’ complexity, researchers tend to reduce the number of animals in experiments for expenses and ethical concerns. This tendency makes the risk of false-positive results, as statistical significance, the primary criterion to validate findings, often fails if testing small samples. This study aims to highlight such risks using an example from experimental regenerative therapy and propose a machine-learning...
-
IEEE International Joint Conference on Neural Networks
Konferencje -
International Conference on Engineering Applications of Neural Networks
Konferencje -
Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology
PublikacjaLignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization...
-
AI-Driven Sustainability in Agriculture and Farming
PublikacjaIn this chapter, we discuss the role of artificial intelligence (AI) in promoting sustainable agriculture and farming. Three main themes run through the chapter. First, we review the state of the art of smart farming and explore the transformative impact of AI on modern agricultural practices, focusing on its contribution to sustainability. With this in mind, our analysis focuses on topics such as data collection and storage, AI...
-
Spectrum-based modal parameters identification with Particle Swarm Optimization
PublikacjaThe paper presents the new method of the natural frequencies and damping identification based on the Artificial Intelligence (AI) Particle Swarm Optimization (PSO) algorithm. The identification is performed in the frequency domain. The algorithm performs two PSO-based steps and introduces some modifications in order to achieve quick convergence and low estimation error of the identified parameters’ values for multi-mode systems....
-
Improving all-reduce collective operations for imbalanced process arrival patterns
PublikacjaTwo new algorithms for the all-reduce operation optimized for imbalanced process arrival patterns (PAPs) are presented: (1) sorted linear tree, (2) pre-reduced ring as well as a new way of online PAP detection, including process arrival time estimations, and their distribution between cooperating processes was introduced. The idea, pseudo-code, implementation details, benchmark for performance evaluation and a real case example...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublikacjaCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Signal Processing in the Investigation of Two-phase Liquid-gas Flow by Gamma-ray Absorption
Publikacjan this paper, the use of the gamma-absorption method applied in the investigation of the two-phase liquid-gas flow in the pipeline is described. An example of its application to the air transported by water in a horizontal pipeline is evaluated. In the measurements, Am-241 radioactive sources and probes with Nal (Tl) scintillation crystals have been used. The signals from the radiometric set were used to determine the velocity...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks
PublikacjaMost of industrial processes are nonlinear, not stationary, and dynamical with at least few different time scales in their internal dynamics and hardly measured states. A biological wastewater treatment plant falls into this category. The paper considers modelling such processes for monitorning and control purposes by using State - Space Wavelet Neural Networks (SSWN). The modelling method is illustrated based on bioreactors of...
-
A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multi-Head Convolutional Attention
PublikacjaTogether with fast advancement of the Internet of Things (IoT), smart healthcare applications and systems are equipped with increasingly more wearable sensors and mobile devices. These sensors are used not only to collect data, but also, and more importantly, to assist in daily activity tracking and analyzing of their users. Various human activity recognition (HAR) approaches are used to enhance such tracking. Most of the existing...
-
Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach
PublikacjaTo improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....
-
KEMR-Net: A Knowledge-Enhanced Mask Refinement Network for Chromosome Instance Segmentation
PublikacjaThis article proposes a mask refinement method for chromosome instance segmentation. The proposed method exploits the knowledge representation capability of Neural Knowledge DNA (NK-DNA) to capture the semantics of the chromosome’s shape, texture, and key points, and then it uses the captured knowledge to improve the accuracy and smoothness of the masks. We validate the method’s effectiveness on our latest high-resolution chromosome...
-
The trajectories of the financial crisis of companies at risk of bankruptcy
PublikacjaThis article concerns the assessment of the trajectory of the collapse of enterprises in Central Europe. The author has developed a model of a Kohonen artificial neural network. This model was used to determine 6 different classes of risk and was allowed to graphically determine the 5- to 10-year trajectory of going bankrupt. The study used data on 140 companies listed on the Warsaw Stock Exchange. This population was divided into...
-
International Cross-Domain Conference for Machine Learning and Knowledge Extraction
Konferencje -
Threat intelligence platform for the energy sector
PublikacjaIn recent years, critical infrastructures and power systems in particular have been subjected to sophisticated cyberthreats, including targeted attacks and advanced persistent threats. A promising response to this challenging situation is building up enhanced threat intelligence that interlinks information sharing and fine-grained situation awareness. In this paper a framework which integrates all levels of threat intelligence...
-
Wioleta Kucharska dr hab. inż.
OsobyWioleta Kucharska holds a position as an Associate Professor at the Faculty of Management and Economics of the Gdansk TECH, Gdansk University of Technology, Fahrenheit Universities Union, Poland. Authored 66 peer-reviewed studies published with Wiley, Springer, Taylor & Francis, Emerald, Elsevier, IGI Global, and Routledge. Recently involved in such topics as tacit knowledge and company culture of knowledge, learning, and collaboration....
-
Preferred Benchmarking Criteria for Systematic Taxonomy of Embedded Platforms (STEP) in Human System Interaction Systems
PublikacjaThe rate of progress in the field of Artificial Intelligence (AI) and Machine Learning (ML) has significantly increased over the past ten years and continues to accelerate. Since then, AI has made the leap from research case studies to real production ready applications. The significance of this growth cannot be undermined as it catalyzed the very nature of computing. Conventional platforms struggle to achieve greater performance...
-
International Symposium on Applied Machine Intelligence and Informatics
Konferencje -
European Conference on Artificial Intelligence
Konferencje -
Artificial Intelligence and Applications Conference
Konferencje -
Artificial Intelligence Applications and Innovations
Konferencje -
Artificial Intelligence in Medicine in Europe
Konferencje