Wyniki wyszukiwania dla: CURING SYSTEM
-
Complex modulus of Cement Bitumen Treated Material Mixture C3E4 cores obtained from the field section (28-365 days of curing at the field and later in laboratory at 20C)
Dane BadawczeDataset presents data of complex modulus determined for cold recycled mixture – cement bitumen treated material mixture with following binding agents: 3% cement, 4% emulsion (C3E4). Mixture was designed according to Polish requirements for the base course of pavement. Specimen were obtained from the field at 28, 180, 270 and 365 days after compaction....
-
Fatigue data of Cement Bitumen Treated Material Mixture C3E5.5 (over 28 days of curing at 20C)
Dane BadawczeFatigue data of Cement Bitumen Treated Material Mixture C3E5.5 (over 28 days of curing at 20C)
-
Numerical simulation of hardening of concrete plate
PublikacjaThe paper presents a theoretical formulation of concrete curing in order to predict temperature evolution and strength development. The model of heat flow is based on a well-known Fourier equation. The numerical solution is implemented by means of the Finite Difference Method. In order to verify the model, the in situ temperature measurements at the top plate of a road bridge were carried out. A high agreement between numerical...
-
Fatigue data of Cement Bitumen Treated Material Mixture C3E5.5 (Direct tension, over 28 days of curing at 20C)
Dane BadawczeFatigue data of Cement Bitumen Treated Material Mixture C3E5.5 (Direct tension, over 28 days of curing at 20C)
-
Preliminary Investigation on Auto-Thermal Extrusion of Ground Tire Rubber
PublikacjaGround tire rubber (GTR) was processed using an auto-thermal extrusion as a prerequisite to green reclaiming of waste rubbers. The reclaimed GTR underwent a series of tests: thermogravimetric analysis combined with Fourier-transform infrared spectroscopy (TGA-FTIR), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and static headspace and gas chromatography-mass spectrometry (SHS-GC-MS) in order...
-
Isothermal Vulcanization and Non-Isothermal Degradation Kinetics of XNBR/Epoxy/XNBR-g-Halloysite Nanotubes (HNT) Nanocomposites
PublikacjaThe effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the...
-
Micro‑ and nano‑ bentonite to improve the strength of clayey sand as a nano soil‑improvement technique
PublikacjaNano-additives results in the formation of nano-cementation (NC). This process is recently used to improve the durability of various building materials. NC used to improve the strength of untreated soil materials, also known as nano soil-improvement (NSI). In few years, the role of nano-additives in various types of soils were developed. In this research, the role of micro- and nano- size of bentonite as soil stabilizer was evaluated...
-
Novel Approaches of Using of Spirulina Platensis in Natural Rubber Based Composites
PublikacjaThe aim of this work was to investigate the influence of Spirulina (Spirulina platensis) as a natural filler on the curing characterization, morphology and mechanical, thermomechanical and thermal properties of natural rubber (NR) based composites. Spirulina was introduced into NR mixture in amount of 0 phr, 10 phr and 30 phr. The vulcanization process was carried out at the determined process condition by using hydraulic press...
-
Laboratory assessment of permeability of sand and biopolymer mixtures
PublikacjaLaboratory assessment of permeability of sand and biopolymer mixtures. This research presents a method of creating seepage barriers in a sandy soil using biopolymer additives (biosubstance), which consist of polysaccharides and water. Polysaccharides strongly interact with water to produce a viscous suspension. The paper aims to investigate the infl uence of a biosubstance employed in a highly permeable sandy soil. Amount of the...
-
The Influence of Cement Type on Early Properties of Cold In-Place Recycled Mixtures
PublikacjaCold in-place recycling is a commonly used maintenance treatment in rehabilitation of low and medium volume roads in Poland. Typically, two types of binding agents are used—cement and bituminous emulsion (or foamed bitumen).Due to the harsh Polish climate with many freeze/thaw cycles and frequent occurrence of saturated conditions, the used amounts of cement are higher than those commonly used in warmer parts of Europe. While there...
-
Polyurethanes
PublikacjaHandbook of Thermoset Plastics, Fourth Edition provides complete coverage of the chemical processes, manufacturing techniques and design properties of each polymer, along with its applications. This new edition has been expanded to include the latest developments in the field, with new chapters on radiation curing, biological adhesives, vitrimers, and 3D printing. This detailed handbook considers the practical implications of using...
-
Synthesis, Structure and Properties of Poly(ester-Urethane-Urea)s Synthesized Using Biobased Diamine
PublikacjaModern polymer science and technology is focused on the development of partial or fully green polymers. This focus is related to green chemistry trends, which propose using natural and renewable resources as monomers in the synthesis of polymers. In this study, biobased diamine was used as a chain extender of ester-urethane prepolymer. Obtained poly(ester-urethane-urea) contains 16 wt% of biobased diamine. There is mention of an...
-
Isothermal Calorimetry and Compressive Strength Tests of Mortar Specimens for Determination of Apparent Activation Energy
PublikacjaThe hydration process of cementitious materials involves a thermally activated reaction that depends on the composition of the mixture and the curing temperature. The main parameter affecting the temperature variation of cast-in-place concrete is the apparent activation energy, which can be used for the efficient prediction of the temperature evolution and maturity index of hardening concrete. This paper discusses two methods to...
-
Thermgravimetric analysis (TGA) data of cement pastes containing pristine and silica-coated bismuth oxide and gadolinium oxide particles
Dane BadawczeThermogravimetric (TGA) data of cement pastes after 2, 7 and 28 days. Samples designations: Control, BG, BG-A and BG-B are associated with the specimen names in the associated publication.
-
Cure kinetics of epoxy/MWCNTs nanocomposites: Isothermal calorimetric and rheological analyses
PublikacjaA combinatorial route has been applied in cure kinetics study of epoxy nanocomposites containing multi-walled carbon nanotubes (MWCNTs) based on differential scanning calorimetry and rheokinetic analyses under isothermal conditions. Pristine and amine-modified MWCNTs bearing primary and secondary amines were used at very low concentrations (0.1 and 0.3 wt.% based on epoxy weight). Model-free and model-fitting methods were applied...
-
Concrete Compressive Strength Under Changing Environmental Conditions During Placement Processes
PublikacjaThe technological process of concrete production consists of several parts, including concrete mix design, concrete mix production, transportation of fresh concrete mix to a construction site, placement in concrete framework, and curing. Proper execution of these steps provides good quality concrete. Some factors can disturb the technological process, mainly temperature and excessive precipitation. Changing daily temperature and...
-
Thermo-mechanical reclaiming of ground tire rubber via extrusion at low temperature: Efficiency and limits
PublikacjaThermomechanical reclaiming of ground tire rubber (GTR) was performed at different temperatures (60, 120, and 180°C) using a co-rotating twin-screw extruder. Obtained samples were used in styrene-butadiene rubber (SBR) blends. As reference samples, SBR compounds containing untreated GTR were used. Curing characteristics, static and dynamic mechanical properties, and morphology of the obtained blends were determined. The results...
-
Phosphoroorganic Metal Complexes in Therapeutics
PublikacjaThe present mini-review highlights recent developments on antitumor activity of metal-based therapeutics which have been a subject of researches for the last few decades. In 1965, Rosenberg found that during an electrolysis on platinum electrodes a complex of Pt is generated which inhibited to a great extent a binary fission in Escherichia coli bacteria. This discovery started a new chapter in medicinal chemistry and the interesting...
-
Hydraulic conductivity of a biopolymer treated sand
PublikacjaThis paper presents results of laboratory assessment of creating seepage barriers in a sandy soil using biopolymer additives (bio substance), which consist of polysaccharides and water. Polysaccharides strongly interact with water to produce a viscous suspension. The aim of the conducted work was to investigate the influence of a biosubstance employed in a highly permeable sandy soil. The amount of the biopolymer used in a sample...
-
A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity
PublikacjaObesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion...
-
Cure kinetics of epoxy/MWCNTs nanocomposites: Nonisothermal calorimetric and rheokinetic techniques
PublikacjaNonisothermal calorimetric and isothermal rheokinetic analyses were used to study cure kinetics of epoxy/anhydride systems containing very low concentration of pristine and amine-functionalized multiwalled carbon nanotubes (MWCNTs). Isoconversional methods were applied in calorimetric modeling of cure kinetics. Eα vs. α dependency and autocatalytic nature of curing were identified for both types of nanocomposites by isoconversional...
-
Biomechanical testing of bioactive bone cements – a comparison of the impact of modifiers: antibiotics and nanometals
PublikacjaApart from its bone filler and fracture stabilizing function, bone cement can be used as a carrier of bioactive substances, and such modified bone cement can protect the implant against microorganisms, treat local infections and combat bacteria introduced during the surgical procedure. In this paper, the effects of modifying antibiotics and nanosilver on the biomechanical properties of bone cement were examined. The following tests...
-
Diamine derivatives of dimerized fatty acids and bio-based polyether polyol as sustainable platforms for the synthesis of non-isocyanate polyurethanes
PublikacjaA series of environmentally friendly non-isocyanate polyurethanes (NIPUs) were successfully prepared via the polyaddition reaction of bio-based polyether polyol-based cyclic carbonate with diamine derivative of dimerized fatty acids. The syntheses of NIPUs were realized by the three-step method in the absence of toxic solvents and, importantly, the process of carbonation did not require the use of elevated pressure. The effect...
-
The influence of screw configuration and screw speed of co-rotating twin screw extruder on the properties of products obtained by thermomechanical reclaiming of ground tire rubber
PublikacjaThe results of our investigations on the process of continuous thermomechanical reclaiming of ground tire rubber (GTR) carried out using a twin screw extruder are presented.We used a co-rotating twin screw extruder with a special configuration of plasticizing unit, enabling generation of considerable shear forces. The influence of screw configuration and screw speed on breaking of chemical crosslink bonds contained in ground tire...
-
Injectable poloxamer/graphene oxide hydrogels with well‐controlled mechanical and rheological properties
PublikacjaAlthough significant progress has been made in the design and application of injectable hydrogels for biomedical applications, concurrent control of rheological and mechanical properties of injectable hydrogels has remained as an open challenge to the researchers. In this work, we introduce and put into practice a photo‐curable poloxamer (also known as Pluronic)/graphene oxide (Plu/GO) injectable hydrogel with well‐controlled rheological...
-
Injectable bone cement based on magnesium potassium phosphate and cross-linked alginate hydrogel designed for minimally invasive orthopedic procedures
PublikacjaBone cement based on magnesium phosphate has extremely favorable properties for its application as a bioactive bone substitute. However, further improvement is still expected due to difficult injectability and high brittleness. This paper reported the preparation of novel biocomposite cement, classified as dual-setting, obtained through ceramic hydration reaction and polymer cross-linking. Cement was composed of magnesium potassium...
-
Correlation between Compressive Strength and Heat of Hydration of Cement Mortars with Siliceous Fly Ash
PublikacjaThis paper presents the results of calorimetric and strength tests of mortars with ordinary Portland cement and two substitution rates (10 and 20%) of cement by siliceous fly ash. The prepared samples were cured under isothermal conditions at four different temperatures: 23, 33, 43 and 53 °C. Heat of hydration was measured using an isothermal calorimeter dedicated to monitor the hydration process of cementitious composites such...
-
Nano soil improvement technique using cement
PublikacjaNano soil-improvement is an innovative idea in geotechnical engineering. Nanomaterials are among the newest additives that improve soil properties. Herein, laboratory tests, such as unconfined compressive strength, direct shear test, and initial tests, were conducted to investigate the geotechnical properties of Kelachay clay with micro- and nanosized cement to evaluate its particles in untreated soil and observe changes in the...
-
Reclaimed rubber in-situ grafted with soybean oil as a novel green reactive plasticizer in SBR/silica compounds
PublikacjaPolymer recycling and biodegradable polymeric materials are two major routes towards the sustainable development of polymer materials which contributes to the management of waste. In this regard, an eco-friendly approach is presented wherein high reclaiming degree of ground tire rubber (GTR) was achieved by low-temperature oxidation under swollen action of soybean oil. In-situ reclaimed GTR with soybean oil was cured into reactive...
-
Effect of particle size of aluminosilicate microspheres on the change of hydration heat of cement mortars and selected physical, chemical, and mechanical properties.
Dane BadawczeThis subject of the work is the study of selected properties of cement mortars containing two fractions of aluminosilicate microspheres with grain size in the range of 125 to 250 μm and from 250 to 500 μm. Mortar mixtures with ordinary Portland cement (OPC 42.5R) and three substitution rates of cement by microspheres, 1.5%, 3.5%, and 5.0%, were investigated....
-
Preparation and characterization of natural rubber composites highly filled with brewers' spent grain/ground tire rubber hybrid reinforcement
PublikacjaBrewers' spent grain (BSG) and ground tire rubber (GTR) were applied as low-cost hybrid reinforcement natural rubber (NR). The impact of BSG/GTR ratio (in range: 100/0, 75/25, 50/50, 25/75 and 0/100 phr) on processing and performance properties of highly filled natural rubber composites was evaluated by oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy,...
-
Sustainable utilization of copper post-flotation waste in cement composites
PublikacjaThe current way of managing the copper ore flotation waste is by placing it in waste neutralization facilities. However, flotation waste has great potential in application in cement composites. The article presents the detailed characteristics of post-flotation waste (PFW) and three types of cements: CEM I, CEM II/B-V, and CEM III/A, 42.5 MPa class. The post-flotation waste added for 20% of the cement mass increase the water demand...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublikacjaFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
Micro- and nano-Illite to improve strength of untreated-soil as a nano soil-improvement (NSI) technique
PublikacjaSoil stabilization is a technique of improving the geotechnical properties of soils for various engineering applications. However, conventional stabilizers such as cement and lime have some limitations, such as high cost, environmental impact, and durability issues. Therefore, there is a need for alternative and innovative stabilizers that can overcome these challenges. This study introduces nano-Illite, a type of clay mineral,...
-
Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends
PublikacjaA novel and cost-effective approach towards the modification of epoxy matrix has been developed using recycled polyurethane for the first time without sacrificing any of the intrinsic properties of the resin. Polyurethane, recycled from waste foam by glycolysis process (RPU), was found to be very effective in improving the properties of the thermosetting resin based on Diglycidyl ether of bisphenol-A (DGEBA). The effect of the...
-
Study of the Resistance to Influence of Aggressive Liquids on Concrete with Lightweight Aggregate
PublikacjaThe corrosion of the structure of concrete caused by the aggressive external environment is one of the main problems that can reduce the durability of buildings. The paper analyzes the influence of the type of component on selected properties of lightweight concrete (LWC) exposed to aggressive liquids. When lightweight concrete containing porous aggregates is used, the influence of an aggressive environment may be of particular...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...