Filtry
wszystkich: 10499
-
Katalog
- Publikacje 9541 wyników po odfiltrowaniu
- Czasopisma 48 wyników po odfiltrowaniu
- Konferencje 18 wyników po odfiltrowaniu
- Osoby 109 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 65 wyników po odfiltrowaniu
- Wydarzenia 7 wyników po odfiltrowaniu
- Dane Badawcze 709 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: SYMPTOM-BASED PREDICTION
-
Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants
Publikacja -
Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non–muscle-invasive Bladder Cancer
Publikacja -
Prediction of protein structure using a knowledge-based off-lattice united-residue force field and global optimization methods
Publikacja -
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublikacjaRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublikacjaNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Method for prediction of the frost resistance ability of air‐entrained concrete based on the 3D air void characteristics by x‐ray micro‐CT
PublikacjaIn modern construction, one of the most important factors in the execution of contracts is time. Standard procedures for assessing the frost resistance or concrete are usually very time-consuming and can take up to 40 days. The current paper is experimentally and practically oriented. It presents an alternative testing method, based on air void network, that allows to assess the frost resistance of concrete within just a few days...
-
Reversed-phase and normal-phase thin-layer chromatography and their application to the lipophilicity prediction of synthetic pyrethroids based on quantitative structure–retention relationships
Publikacja -
Prediction of protein structure with the coarse-grained UNRES force field assisted by small X-ray scattering data and knowledge-based information
Publikacja -
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublikacjaOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Theoretical designing of selenium heterocyclic non-fullerene acceptors with enhanced power conversion efficiency for organic solar cells: a DFT/TD-DFT-based prediction and understanding
PublikacjaIn this study, we have designed and explored a new series of non-fullerene acceptors for possible applications in organic solar cells. We have designed four molecules named as APH1 to APH4 after end-capped modification of recently synthesized Y6-Se-4Cl molecule. Density functional theory and time dependent-density functional theory have been employed for computing geometric and photovoltaic parameters of the designed molecules....
-
Andrzej Chybicki dr inż.
OsobyZ wykształcenia informatyk, absolwent Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej, doktor nauk technicznych w dziedzinie informatyka specjalizujący się w przetwarzaniau danych przestrzennych w rozproszonych systemach informatycznych. Ukierunkowany na wykorzystywanie osiągnięć i wiedzy zakresu prowadzonych badań w przemyśle. Współpracował z szeregiem podmiotów przemysłu informatycznego, geodezyjnego...
-
Marcin Kulawiak dr hab. inż.
Osoby -
Zbigniew Łubniewski dr hab. inż.
Osoby -
OCENA PRZYDATNOŚCI WIELOWYMIAROWYCH MODELI DYSKRYMINACYJNYCH DO PROGNOZOWANIA UPADŁOŚCI PRZEDSIĘBIORSTW HANDLOWYCH
PublikacjaCelem badań była ocena przydatności użycia modeli opartych na wielowymiarowej analizie dyskryminacyjnej do prognozowania upadłości polskich przedsiębiorstw handlowych oraz próba zwiększenia ich sprawności poprzez zmianę wartości ich punktów granicznych. Badaniu poddano modele: E. I. Altmana „B”, D. Hadasik, A. Hołdy oraz M. Hamrola, B. Czajki i M. Piechockiego. Do oceny modeli wykorzystano iloraz szans oraz macierz klasyfikacji...
-
Protokół głosowania większościowego w narzędziu wsparcia decyzji handlowych
PublikacjaIstnieje szerokie spektrum narzędzi i metod wspierających decyzje handlowe, lecz brakuj jasnych reguł ich stosowania. Zaproponowano samoorganizujacy się system agentowy do wspierania decyzji handlowych. System bazując na glosowaniu z dynamicznymi wagami, wskazuje efektywne indykatory na podstawie ich poprzednich osiągnięć. Przedstawiono analizę formalną i wyniki weryfikacji, potwierdzającej cechy rozwiązania.
-
System do prototypowania bezprzewodowych inteligentnych urządzeń monitoringu audio-video
PublikacjaW komunikacie przedstawiono system prototypowania bezprzewodowych urządzeń do monitoringu audio-video. System bazuje na układach FPGA Virtex6 i wielu dodatkowych wspierających urządzeniach jak: szybka pamięć DDR3, mała kamera HD, mikrofon z konwerterem A/C, moduł radiowy WiFi, itp. Funkcjonalność systemu została szczegółowo opisana w komunikacie. System został zoptymalizowany do pracy pod kontrolą systemu operacyjnego Linux, zostały...
-
Krzysztof Bikonis dr inż.
Osoby -
Krzysztof Bruniecki dr inż.
Osoby -
Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową
PublikacjaPodstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca....
-
KNOWLEDGE-BASED SYSTEMS
Czasopisma -
Ochrona Przeciwkorozyjna Instalacji Przemysłowych i Risk Based Inspection (RBI)
Kursy OnlineRisk Based Inspection
-
Wzrost temperatury cieczy roboczej jako symptom awarii układu hydraulicznego
PublikacjaW artykule opisano czynniki wpływające na nagły wzrost temperatury cieczy roboczej w układach hydraulicznych. Przedstawiono na podstawie przykładowego schematu hydraulicznego możliwe przyczyny wzrostu temperatury, oraz tok działań mających doprowadzić do szybkiej identyfikacji uszkodzonego elementu.
-
JOURNAL OF PAIN AND SYMPTOM MANAGEMENT
Czasopisma -
Rating Prediction with Contextual Conditional Preferences
PublikacjaExploiting contextual information is considered a good solution to improve the quality of recommendations, aiming at suggesting more relevant items for a specific context. On the other hand, recommender systems research still strive for solving the cold-start problem, namely where not enough information about users and their ratings is available. In this paper we propose a new rating prediction algorithm to face the cold-start...
-
Intelligent Decision Forest Models for Customer Churn Prediction
PublikacjaCustomer churn is a critical issue impacting enterprises and organizations, particularly in the emerging and highly competitive telecommunications industry. It is important to researchers and industry analysts interested in projecting customer behavior to separate churn from non‐churn consumers. The fundamental incentive is a firm’s intent desire to keep current consumers, along with the exorbitant expense of gaining new ones....
-
Grzegorz Boczkaj dr hab. inż.
Osoby -
Evaluating the risk of endometriosis based on patients’ self-assessment questionnaires
PublikacjaBackground Endometriosis is a condition that significantly affects the quality of life of about 10 % of reproductive-aged women. It is characterized by the presence of tissue similar to the uterine lining (endometrium) outside the uterus, which can lead lead scarring, adhesions, pain, and fertility issues. While numerous factors associated with endometriosis are documented, a wide range of symptoms may still be undiscovered. Methods In...
-
Reliability Based zoptimization 2023/24
Kursy Online -
Abnormal features of Macoma balthica (Bivalvia) in the Baltic Sea: alerting symptom of environmental changes?
Publikacja -
Ship Resistance Prediction with Artificial Neural Networks
PublikacjaThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Akaike's final prediction error criterion revisited
PublikacjaWhen local identification of a nonstationary ARX system is carried out, two important decisions must be taken. First, one should decide upon the number of estimated parameters, i.e., on the model order. Second, one should choose the appropriate estimation bandwidth, related to the (effective) number of input-output data samples that will be used for identification/ tracking purposes. Failure to make the right decisions results...
-
A new index for statistical analyses and prediction of travelling ionospheric disturbances
PublikacjaTravelling Ionospheric Disturbances (TIDs) are signatures of atmospheric gravity waves (AGWs) observed in changes in the electron density. The analysis of TIDs is relevant for studying coupling processes in the thermosphere–ionosphere system. A new TID index is introduced, which is based on an easy extension of the commonly used approach for TID detection. This TID activity index, which can be applied for individual Global Navigation...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublikacjaIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Induction machine behavioral modeling for prediction of EMI propagation.
PublikacjaThis paper presents the results of wideband behavioral modeling of an induction machine (IM). The proposed solution enables modeling the IM differential- and common-mode impedance for a frequency range from 1 kHz to 10 MHz. Methods of parameter extraction are derived from the measured IM impedances. The developed models of 1.5 kW and 7.5 kW induction machines are designed using the Saber Sketch scheme editor and simulated in the...
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublikacjaRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Multicomponent ionic liquid CMC prediction
PublikacjaWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
[ILiT, IŚGiE] Reliability-Based Optimization (RBO)
Kursy Online -
Vibro piles performance prediction using result of CPT
PublikacjaVibro piles belong to the group of full displacement piles with an expanded base, characterised by a very high load capacity, especially in non-cohesive soils. The problem is to adopt a reliable method for the determination of full load–settlement (Q–s) curve. A frequent difficulty is the determination of the load capacity limit based on the static load test because the course of the load–settlement curve is of a linear nature....
-
Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction
PublikacjaA reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....
-
NUMERICAL ESTIMATION OF HULL HYDRODYNAMIC DERIVATIVES IN SHIP MANOUVERING PREDICTION
PublikacjaOperating in crowded waterways pose a risk of accidents and disasters due to maneuvering limitations of the ship. In order to predict ship’s maneuvering characteristics at the design stage, model tests are often executed as the most accurate prediction tool. Two approaches can be distinguished here: free running model tests and numerical simulations based on planar motion model with the use of hydrodynamic derivatives obtained...
-
METHOD FOR SHIP'S ROLLING PERIOD PREDICTION WITH REGARD TO NON-LINEARITY OF GZ CURVE
PublikacjaThe paper deals with the problem of prediction of the rolling period. A special emphasis is put on the practical application of the new method for rolling period prediction with regard to non-linearity of the GZ curve. The one degree-of-freedom rolling equation is applied with using the non-linear stiffness moment and linear damping moment formulas. A number of ships are considered to research the discrepancies between the pending...
-
Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review
PublikacjaBackground: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016...
-
Electromagnetic interference frequencies prediction model of flyback converter for snubber design
PublikacjaSnubber design for flyback converters usually requires experimental prototype measurements or simulation based on accurate and complex models. In this study simplified circuit modelling of a flyback converter has been described to dimension snubbers in early stage of design process. Simulation based prediction of the transistor and diode ringing frequencies has been validated by measurements in a prototype setup. In that way obtained...
-
Shorter Diagnostic Delay in Polish Adult Patients With Common Variable Immunodeficiency and Symptom Onset After 1999
Publikacja -
Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data
PublikacjaThis paper examines the usefulness of logit regression in forecasting the consumer bankruptcy of households using an imbalanced dataset. The research on consumer bankruptcy prediction is of paramount importance as it aims to build statistical models that can identify consumers in a difficult financial situation that may lead to consumer bankruptcy. In the face of the current global pandemic crisis, the future of household finances...
-
Operational Enhancement of Numerical Weather Prediction with Data from Real-time Satellite Images
PublikacjaNumerical weather prediction (NWP) is a rapidly expanding field of science, which is related to meteorology, remote sensing and computer science. Authors present methods of enhancing WRF EMS (Weather Research and Forecast Environmental Modeling System) weather prediction system using data from satellites equipped with AMSU sensor (Advanced Microwave Sounding Unit). The data is acquired with Department of Geoinformatics’ ground...
-
Impact of AlphaFold on structure prediction of protein complexes: The CASP15‐CAPRI experiment
PublikacjaWe present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody–antigen complexes, and 7 large assemblies. On average 70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups...
-
Dynamic Bankruptcy Prediction Models for European Enterprises
PublikacjaThis manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...
-
Integrated information and prediction Web Service WaterPUCK General concept
PublikacjaIn this paper, general concept of a new method as ‘Integrated information and prediction Web Service WaterPUCK’ for investigation influence of agricultural holdings and land-use structures on coastal waters of the southern Baltic Sea is presented. WaterPUCK Service is focused on determination of the current and future environmental status of the surface water and groundwater located in the Puck District (Poland) and its impact...