Wyniki wyszukiwania dla: coupled nonlinear schr¨odinger equations
-
Existence of unbounded solutions to parabolic equations with functional dependence
PublikacjaThe Cauchy problem for nonlinear parabolic differential-functional equations is considered. Under natural generalized Lipschitz-type conditions with weights, the existence and uniqueness of unbounded solutions is obtained in three main cases: (i) the functional dependence u(·); (ii) the functional dependence u(·) and ∂xu(·); (iii) the functional dependence u(·)and the pointwise dependence ∂xu(t,x).
-
Determination of time delay between ventricles contraction using impedance measurements
PublikacjaThe paper presents a novel approach to assessment of ventricular dyssynchrony basing on multichannel electrical impedance measurements. Using a proper placement of electrodes, the sensitivity approach allows estimating time difference between chambers contraction from over determined nonlinear system of equations. The theoretical considerations which include Finite Element Method simulations were verified using measurements on...
-
Nonlinear resultant theory of shells accounting for thermodiffusion
PublikacjaThe complete nonlinear resultant 2D model of shell thermodiffusion is developed. All 2D balance laws and the entropy imbalance are formulated by direct through-the-thickness integration of respective 3D laws of continuum thermodiffusion. This leads to a more rich thermodynamic structure of our 2D model with several additional 2D fields not present in the 3D parent model. Constitutive equations of elastic thermodiffusive shells...
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Dane BadawczeThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation
PublikacjaTwo nonlinear versions of the Muskingum equation are considered. The difference between both equations relates to the exponent parameter. In the first version, commonly used in hydrology, this parameter is considered as free, while in the second version, it takes a value resulting from the kinematic wave theory. Consequently, the first version of the equation is dimensionally inconsistent, whereas the proposed second one is consistent. It...
-
Modelling of joining route segments of differential curvature
PublikacjaThe paper presents a new general method of modelling route segments curvature using differential equations. The method enables joining of route segments of different curvature. Transitional curves of linear and nonlinear curvatures have been identified in the case of joining two circular arcs by S-shaped and C-oval transitions. The obtained S-shaped curves have been compared to the cubic C-Bezier curves and to the Pythagorean hodograph...
-
A Nonlinear Model of a Mesh Shell
PublikacjaFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...
-
Simulations of flows in the coastal zone of the Baltic Sea
Dane BadawczeThe study area is located in the Southern Baltic, within Polish Marine Areas, adjacent to the coastline in the vicinity of Lubiatowo village, where The Coastal Research Station (CRS) – a field laboratory of the Institute of Hydro-Engineering of the Polish Academy of Sciences (IBW PAN) –is situated. The numerical reconstruction of the coastal flow was...
-
Description of the solution set of the von Karman equations for a circular plate in a small neighbourhood of a simple bifurcation point
PublikacjaW niniejszej pracy badamy równania von Karmana dla cienkiej, sprężystej, kołowej płyty na sprężystym podłożu, poddawanej działaniu sił ściskających wzdłuż brzegu. Są to równania różniczkowe cząstkowe IV rzędu. Stosując metody analizy nieliniowej, opisujemy zbiór rozwiązań równań von Karmana w małym otoczeniu jednokrotnego punktu bifurkacji.Badania były finansowane przez grant nr 1 P03A 042 29.
-
A note on the Morse homology for a class of functionals in Banach spaces involving the 2p-area functional
PublikacjaIn this paper we show how to construct Morse homology for an explicit class of functionals involving the 2p-area functional. The natural domain of definition of such functionals is the Banach space W_0^{1,2p}(\Omega), where p > n/2 and \Omega \subet R^n is a bounded domain with sufficiently smooth boundary. As W_0^{1,2p}(\Omega) is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate...
-
MAGNETOACOUSTIC HEATING AND STREAMING IN A PLASMA WITH FINITE ELECTRICAL CONDUCTIVITY
PublikacjaNonlinear effects of planar and quasi-planar magnetosound perturbations are discussed. Plasma is assumed to be an ideal gas with a finite electrical conductivity permeated by a magnetic filed orthogonal to the trajectories of gas particles. the excitation of non-wave modes in the filed of intense magnetoacoustic perturbations, i.e., magnetoaciustic heating and streaming, is discussed. The analysis includes a derivation if instantaneous...
-
Monotone iterative method to second order differential equations with deviating arguments involving Stieltjes integral boundary conditions
PublikacjaWe use a monotone iterative method for second order differential equations with deviating arguments and boundary conditions involving Stieltjes integrals. We establish sufficient conditions which guarantee that such problems have extremal solutions in the corresponding region bounded by lower and upper solutions. We also discuss the situation when problems have coupled quasi-solutions. We illustrate our results by three examples.
-
On the generalized model of shell structures with functional cross-sections
PublikacjaIn the present study, a single general formulation has been presented for the analysis of various shell-shaped structures. The proposed model is comprehensive and a variety of theories can be used based on it. The cross-section of the shell structure can be arbitrarily analyzed with the presented equations. In other words, various types of shell structures, including cylindrical, conical, spherical, elliptical, hyperbolic, parabolic,...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublikacjaIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Introduction to Numerical Simulation
Kursy OnlineCourse description: This interdisciplinary course provides an introduction to computational techniques for the simulation of a broad range of engineering and physical systems. Concepts and methods discussed are widely illustrated by applications drawn from electrical, mechanical, and chemical engineering. Topics include: mathematical formulations of simulation problems; sparse direct and iterative linear system solution techniques,...
-
Elastoplastic material law in 6-parameter nonlinear shell theory
PublikacjaWe develop the elastoplastic constitutive relations for nonlinear exact 6-parameter shell theory. A J2-type theory with strain hardening is formulated that takes into account asymmetric membrane strain measures. The incremental equations are solved using implicit Euler scheme with closest point projection algorithm. The presented test example shows the correctness of the proposed approach. Influence of micropolar material parameters...
-
generation of the vorticity mode by sound in a bingham plastic
PublikacjaThis study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode,in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describinginteraction between different modes are derived. The attention is paid to the nonlinear effects in the fieldof intense sound. The resulting equations which describe dynamics of both sound and the vorticity modeapply to both periodic...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublikacjaThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
PublikacjaWe shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Karman equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublikacjaThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublikacjaIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
State Observer for Doubly-fed Induction Generator
PublikacjaIn the paper a new state observer for doubly-fed generator has been proposed. In the new approach an extended mathematical model of the doubly fed generator is used to form equations of the introduced z type observer. Stability of the observer has been verified through poles placement analyses. The active and reactive powers of the generator are controlled by a nonlinear multiscalar control method. Simulation and experimental results...
-
Multi-headed chimera states in coupled pendula
PublikacjaWe discuss the occurrence of the chimera states in the network of coupled, excited by the clock’s mechanisms pendula. We find the patterns of multi-headed chimera states in which pendula clustered in different heads behave differently (oscillate with different frequencies) and create different types of synchronous states (complete or phase synchronization). The mathematical model of the network shows that the observed chimera states...
-
On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube
PublikacjaIn order to describe the behavior of thin elements used in MEMS and NEMS, it is essential to study a nonlinear free vibration of nanotubes under complicated external fields such as magnetic environment. In this regard, the magnetic force applied to the conductive nanotube with piezo-flexomagnetic elastic wall is considered. By the inclusion of Euler-Bernoulli beam and using Hamilton’s principle, the equations governing the system...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublikacjaIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
Higher harmonics of the intensity modulated Photocurrent/Photovoltage spectroscopy response - a tool for studying photoelectrochemical nonlinearities
PublikacjaIn this work, a higher harmonic analysis (HHA) of the intensity modulated photocurrent/photovoltage (IMPS/IMVS) spectroscopy data is proposed as a potent tool for studying nonlinear phenomena in photoelectrochemical and photovoltaic systems. Analytical solutions of kinetic equations were constructed for cases of single and double resonance accounting for various sources of higher harmonics. These sources correspond to the physical...
-
Resistant to correlated noise and outliers discrete identification of continuous non-linear non-stationary dynamic objects
PublikacjaIn this study, dedicated methods of parameter estimation were used to identify the coefficients of continuous models represented by linear and nonlinear differential equations. The necessary discrete-time approximation of the base model is achieved by appropriately tuned FIR linear integral filters. The resulting discrete descriptions, which retain the original continuous parameterization, can then be identified using the classical...
-
Resistant to correlated noise and outliers discrete identification of continuous non-linear non-stationary dynamic objects
PublikacjaIn this article, specific methods of parameter estimation were used to identify the coefficients of continuous models represented by linear and nonlinear differential equations. The necessary discrete-time approximation of the base model is achieved by appropriately tuned FIR linear integral filters. The resulting discrete descriptions, which retain the original continuous parameterization, can then be identified using the classical...
-
Excitation of Non-Wave Modes by Sound of Arbitrary Frequency in a Chemically Reacting Gas
PublikacjaThe nonlinear phenomena in the field of high intensity sound propagating in a gas with a chemical reaction, are considered. A chemical reaction of A → B type is followed by dispersion and attenuation of sound which may be atypical during irreversible thermodynamic processes under some conditions. The first and second order derivatives of heat produced in the chemical reaction evaluated at the equilibrium temperature, density and...
-
Ultrashort Opposite Directed Pulses Dynamics with Kerr Effect and Polarization Account
PublikacjaWe present the application of projection operator methods to solving the problem of the propagation and interaction of short optical pulses of different polarizations and directions in a nonlinear dispersive medium. We restrict ourselves by the caseof one-dimensional theory, taking into account material dispersion and Kerr nonlinearity. The construction of operators is delivered in two variants: for the Cauchy problem and for the...
-
Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity
PublikacjaWe discuss connections between the strong ellipticity condition and the infinitesimal instability within the nonlinear strain gradient elasticity. The strong ellipticity (SE) condition describes the property of equations of statics whereas the infinitesimal stability is introduced as the positive definiteness of the second variation of an energy functional. Here we establish few implications which simplify the further analysis...
-
Balance errors generated by numerical diffusion in the solution of non-linear open channel flow equations
PublikacjaThe paper concerns the untypical aspect of application of the dissipative numerical methods to solve nonlinear hyperbolic partial differential equations used in open channel hydraulics. It is shown that in some cases the numerical diffusion generated by the applied method of solution produces not only inaccurate solution but as well as a balance error. This error may occur even for an equation written in the conservative form not...
-
Computationally Effcient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
PublikacjaThis paper presents a study dealing with increasing the computational efficiency in modeling floodplain inundation using a two-dimensional diffusive wave equation. To this end, the domain decomposition technique was used. The resulting one-dimensional diffusion equations were approximated in space with the modified finite element scheme, whereas time integration was carried out using the implicit two-level scheme. The proposed...
-
Numerical solution analysis of fractional point kinetics and heat exchange in nuclear reactor
PublikacjaThe paper presents the neutron point kinetics and heat exchange models for the nuclear reactor. The models consist of a nonlinear system of fractional ordinary differential and algebraic equations. Two numerical algorithms are used to solve them. The first algorithm is application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. The second involves building an analog scheme in the FOMCON Toolbox...
-
Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer
PublikacjaThe subject of this paper is gains selection of an extended induction machine speed observer. A high number of gains makes manual gains selection difficult and due to nonlinear equations of the observer, well-known methods of gains selection for linear systems cannot be applied. A method based on genetic algorithms has been proposed instead. Such an approach requires multiple fitness function calls; therefore, using a quality index...
-
Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass
PublikacjaThe planar response of horizontal massive taut strings, travelled by a heavy point-mass, either driven by an assigned force, or moving with an assigned law, is studied. A kinematically exact model is derived for the free boundary problem via a variational approach, accounting for the singularity in the slope of the deflected string. Reactive forces exchanged between the point-mass and the string are taken into account via Lagrange...
-
Vibrational excitation of acetylene by positron impact
PublikacjaVibrationally inelastic quantum calculations are carried out at low collision energies for the scattering of a beam of positrons off acetylene gaseous molecules. The normal mode analysis is assumed to be valid and the relative fluxes into the C–C and C–H symmetric vibrational modes are computed within a Body-Fixed (BF) formulation of the dynamics by solving the relevant vibrational Coupled Channels (VCC) equations. The clear dominance...
-
Frequency-Variant Double-Zero Single-Pole Reactive Coupling Networks for Coupled-Resonator Microwave Bandpass Filters
PublikacjaIn this work, a family of frequency-variant reactive coupling (FVRC) networks is introduced and discussed as new building blocks for the synthesis of coupled-resonator bandpass filters with real or complex transmission zeros (TZs). The FVRC is a type of nonideal frequency-dependent inverter that has nonzero elements on the diagonal of the impedance matrix, along with a nonlinear frequency-variation profile of its transimpedance...
-
Standing Waves and Acoustic Heating (or Cooling) in Resonators Filled with Chemically Reacting Gas
PublikacjaStanding waves and acoustic heating in a one-dimensional resonator filled with chemically reacting gas, is the subject of investigation. The chemical reaction of A ! B type, which takes place in a gas, may be reversible or not. Governing equations for the sound and entropy mode which is generated in the field of sound are derived by use of a special mathematical method. Under some conditions, sound waves propagating in opposite...
-
An isogeometric finite element formulation for geometrically exact Timoshenko beams with extensible directors
PublikacjaAn isogeometric finite element formulation for geometrically and materially nonlinear Timoshenko beams is presented, which incorporates in-plane deformation of the cross-section described by two extensible director vectors. Since those directors belong to the space R3, a configuration can be additively updated. The developed formulation allows direct application of nonlinear three-dimensional constitutive equations without zero...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublikacjaIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Krzysztof Jamroziak Prof. dr hab. inż.
OsobyKrzysztof Jamroziak is Full Professor of the Wroclaw University of Scinece and Technology in Department Mechanic, Materials and Biomedical Engineering. His interests relate to composite materials, mechanical properties, ballistic impact, ballistic shields, nonlinear dynamics, strength of composite materials. Attention is focused on research on innovative composite structures subjected to impact loads, physico-mechanical properties...
-
Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance
PublikacjaThe impetus of writing this paper is to propose an efficient detection mechanism to scan the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), operating in non-contact mode. In order to implement this scheme, the principal parametric resonance characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mechanism. It is assumed that the microcantilever is made...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublikacjaIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Dimensionally Consistent Nonlinear Muskingum Equation
PublikacjaAlthough the Muskingum equation was proposed nearly 75 years ago, it is still a subject of active research. Despite of its simple form, the real properties of this equation have not been comprehensively explained. This paper proposes a new interpretation of the linear McCarthy’s relation. This relation can be interpreted only together with the storage equation, whereas the Muskingum equation can be derived directly from the system...
-
Proportional-Derivative and Model-Based Controllers for Control of a Variable Mass Manipulator
PublikacjaIn the paper, numerical analysis of dynamics of a variable mass manipulator is presented. A revolute joints composed manipulator is considered. Payload of the gripper is considered as the only element characterized by unknown value of its mass (variable between subsequent operations). As in other cases of the revolute joints composed manipulators, its behaviour dependents significantly on the pose of the manipulator. When the manipulator...
-
Asynchronous Method of Simultaneous Object Position and Orientation Estimation with Two Transmitters
PublikacjaThis paper proposes an object location method for all types of applications, including the Internet of Things. The proposed method enables estimations of the position and orientation of an object on a plane or in space, especially during motion, by means of location signals transmitted simultaneously from two transmitters placed on the object at a known distance from each other. A mathematical analysis of the proposed method and...
-
Discussion of “Development of an Accurate Time integration Technique for the Assessment of Q-Based versus h-Based Formulations of the Diffusion Wave Equation for Flow Routing” by K. Hasanvand, M.R. Hashemi and M.J. Abedini
PublikacjaThe discusser read the original with great interest. It seems, however, that some aspects of the original paper need additional comments. The authors of the original paper discuss the accuracy of a numerical solution of the diffusion wave equation formulated with respect to different state variables. The analysis focuses on nonlinear equations in the form of a single transport equation with the discharge Q (volumetric flow rate)...
-
An isogeometric finite element formulation for boundary and shell viscoelasticity based on a multiplicative surface deformation split
PublikacjaThis work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system,which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff–Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface...
-
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublikacjaThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...