Filtry
wszystkich: 11402
-
Katalog
- Publikacje 10092 wyników po odfiltrowaniu
- Czasopisma 223 wyników po odfiltrowaniu
- Konferencje 44 wyników po odfiltrowaniu
- Osoby 150 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Kursy Online 122 wyników po odfiltrowaniu
- Wydarzenia 14 wyników po odfiltrowaniu
- Dane Badawcze 747 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: probelem-based learning
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublikacjaThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
PublikacjaControlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched...
-
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Publikacja -
Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non–muscle-invasive Bladder Cancer
Publikacja -
High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
Publikacja -
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublikacjaThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublikacjaDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublikacjaThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublikacjaRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublikacjaThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublikacjaSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublikacjaNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublikacjaAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation
PublikacjaDeep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...
-
Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm
PublikacjaThis paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming (ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublikacjaAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublikacjaHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublikacjaIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...
-
Predicting the Purchase of Electricity Prices for Renewable Energy Sources Based on Polish Power Grids Data Using Deep Learning Models for Controlling Small Hybrid PV Microinstallations
Publikacja -
Management and Economics 2022
Kursy OnlineIntroduction to Management and Economics, Learning by Doing method based upon trends in geopolitics and modern economics frameworks, strategy and Business Models Management Tools SEMESTR II Green Technologies and Monitoring
-
Patryk Ziółkowski dr inż.
OsobyAdiunkt na Politechnice Gdańskiej. Brał udział w projektach międzynarodowych, w tym projektach dla Ministerstwa Transportu stanu Alabama (2015), jest także laureatem grantu Fundacji Kościuszkowskiej na prowadzanie badań w USA, który zrealizował w 2018 roku. Ekspert w dziedzinie sztucznej inteligencji. Jego główny obszar zainteresowań badawczych stanowi zastosowanie sztucznej inteligencji w Inżynierii Lądowej. Prowadzi projekty...
-
Webquest- dobra praktyka w e-Learningu
PublikacjaW dobie informatyzacji i pokonywania barier wdrażania e-technologii na uczelniach wyższych uważa się, że jedną z najczęściej stosowanych aktywizujących technik nauczania wśród nauczycieli akademickich jest metoda projektu (ang. project-based learning). W niniejszym opracowaniu proponuje się zastosowanie w procesie edukacji na wyższej uczelni, metody webquest. Jest ona dużo rzadziej stosowana w praktyce. Opracowano ją w oparciu...
-
Hossein Nejatbakhsh Esfahani Dr.
OsobyMy research interests lie primarily in the area of Learning-based Safety-Critical Control Systems, for which I leverage the following concepts and tools:-Robust/Optimal Control-Reinforcement Learning-Model Predictive Control-Data-Driven Control-Control Barrier Function-Risk-Averse Controland with applications to:-Aerial and Marine robotics (fixed-wing UAVs, autonomous ships and underwater vehicles)-Multi-Robot and Networked Control...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
Muhammad Usman PhD
OsobyMuhammad Usman is currently a Computer Vision Researcher at Gdansk University of Technology, working on the BE-LIGHT project, where his research focuses on advancing biomedical diagnostics through the integration of light-based technologies and machine learning techniques. He has completed his Master’s degree in Control Science and Engineering from the University of Science and Technology of China (USTC), Hefei, China. His research...
-
Phong B. Dao D.Sc., Ph.D.
OsobyPhong B. Dao received the Engineer degree in Cybernetics in 2001, the M.Sc. degree in Instrumentation and Control in 2004, both from Hanoi University of Science and Technology in Vietnam, and the Ph.D. degree in Control Engineering in 2011 from the University of Twente, the Netherlands. In May 2020, Dr. Dao received the degree of D.Sc. (Habilitation) in Mechanical Engineering from the AGH University of Science and Technology, Poland....
-
Art Workshop I 2024/2025
Kursy OnlineDrawing classes for first-year students of the Faculty of Architecture are aimed at developing basic drawing skills (learning composition, studying proportions, directions and contrasts, mutual relations of objects and chiaroscuro problems) based on the following topics: still life sketches, still life study, figure sketches in motion, character study. Classes are based on the observation of nature, which is an important element...
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublikacjaRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
CAD. Integrated Architectural Design, MSc Arch (2023/24)
Kursy OnlineDetailed understanding of optimizing the design process using parametric BIM (Building Information Modeling) in the Autodesk Revit Architecture program. Practical design exercises included familiarize students with methods of integrating parametric design and exchanging data with other CAD/BIM programs, modifying parametric objects and generating automatic 2D/3D architectural documentation. The lesson plan introduces students to...
-
Zastosowanie metody studium przypadku w kształceniu menedżerów
PublikacjaKształcenie z wykorzystaniem metod rozwiązywania problemów (problem-based learning) staje się coraz bardziej popularne na wszystkich poziomach kształcenia, również w edukacji biznesowej. Przykładem takiej metody jest studium przypadku (case study). Metoda studium przypadku pozwala na rozwijanie umiejętności i kompetencji wykorzystywanych przez menedżerów w ich pracy, np. umiejętności syntezy, identyfikacji problemów, czy podejmowania...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Interactive Decision Making, Inżynieria Środowiska, Environmental Engineering, 2023/2024 (summer semester)
Kursy OnlineThe course is designed for students of MSc Studies in Environmental Engineering (studies in Polish and English) Person responsible for the subject, carrying out lectures and tutorials: mgr inż. Agata.Siemaszko; agata.siemaszko@pg.edu.pl The person conducting the lectures and tutorials: dr inż. Anna Jakubczyk-Gałczyńska; anna.jakubczyk@pg.edu.pl The course is conducted using the Project-Based Learning (PBL) method. It provides...
-
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublikacjaCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublikacjaPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE
PublikacjaW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...
-
ART WORKSHOP PLEIN AIR
Kursy OnlineART WORKSHOP PLEIN AIR Outdoor classes in the field of painting for students of the first year of the Faculty of Architecture are aimed at shaping basic painting skills. Students continue to learn the basics of the tempera painting technique, which they learned in the second semester. Learning the basics of the painting workshop is carried out by looking for combinations of forms, mutual color relationships and the influence...
-
Adam Władziński
OsobyAdam Władziński, doktorant na Politechnice Gdańskiej, specjalizuje się w inżynierii biomedycznej, skupiając się na uczeniu maszynowym do przetwarzania obrazów z druku 3D układów pomiarowych i tkanek biologicznych, a także na komercyjnym zastosowaniu technologii blockchain. Posiadając wykształcenie z dziedziny elektroniki na Wydziale Elektroniki, Telekomunikacji i Informatyki (ETI), praca magisterska Adama Władzińskiego koncentrowała...
-
Klasyfikator SVM w zastosowaniu do synchronizacji sygnału OFDM zniekształconego przez kanał wielodrogowy
PublikacjaW pracy przedstawiono analizę przydatności klasyfikatora SVM bazującego na uczeniu maszynowym do estymacji przesunięcia czasowego odebranego symbolu OFDM. Przedstawione wyniki wykazują, że ten klasyfikator potrafi zapewnić synchronizację dla różnych kanałów wielodrogowych o wysokim poziomie szumu. Eksperymenty przeprowadzone w Matlabie z użyciem modeli modulatora i demodulatora wykazały, że w większości przypadków klasyfikator...
-
СИЛОВОЙ ПРЕОБРАЗОВАТЕЛЬ С АКТИВНЫМ ПОДАВЛЕНИЕМ ВЫСШИХ ГАРМОНИК ДЛЯ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ (Power converter with active suppression of higher harmonics for aircraft power supply systems)
PublikacjaПредставлены два алгоритма активной фильтрации для силового преобразователя с активным подавлением высших гармоник. Первый алгоритм основан на дискретном преобразовании Фурье: посредством синтезированной системы управления инвертированные измеренные высшие гармоники напряжения поступают на вход инвертора. Второй метод управления основан на алгоритме с использованием принципов самообучения, что значительно снижает потребность в...
-
KNOWLEDGE-BASED SYSTEMS
Czasopisma -
Paweł Robert Surowiec mgr lic.
OsobyDoktorant Katolickiego Uniwersytetu Lubelskiego Jana Pawła II (KUL), licencjat kanoniczny w specjalizacji Ekumenizm uzyskał w 2022 roku. Delegat ds. ekumenizmu w diecezji sandomierskiej. Jego zainteresowania badawcze obejmują dzieła i teologię Johna Henry'ego Newmana (1801–1890). Członek teologicznych stowarzyszeń naukowych: Polskiego Towarzystwa Teologicznego (PTT), European Academy of Religion (EuARe), Society for the Study of...
-
E-learning courses
Kursy OnlineStrona zawiera zbiór kursów prowadzonych metodą e-learning. Kursy te są skierowane do studentów I stopnia kierunku informatyka na VII semestrze profilu Bazy danych, do studentów na kierunku informatyka na II semestrze studiów II stopnia na specjalności ZAD i ISI.
-
Machine learning for PhD students
Kursy OnlineAn introductory course in machine learning for PhD students from Department of Geotechnical and Hydraulic Engineering
-
Deep Learning Basics 2023/24
Kursy OnlineA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Knowledge sharing and knowledge hiding in light of the mistakes acceptance component of learning culture- knowledge culture and human capital implications
PublikacjaPurpose: This study examines the micromechanisms of how knowledge culture fosters human capital development. Method: An empirical model was developed using the structural equation modeling method (SEM) based on a sample of 321 Polish knowledge workers employed in different industries. Findings: This study provides direct empirical evidence that tacit knowledge sharing supports human capital, whereas tacit knowledge hiding does...
-
e-Learning - user's guide for students
Kursy Onlinee-Learning - user's guide for students
-
Sathwik Prathapagiri
OsobySathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
Ochrona Przeciwkorozyjna Instalacji Przemysłowych i Risk Based Inspection (RBI)
Kursy OnlineRisk Based Inspection
-
Lifelong Learning Idea in Architectural Education
PublikacjaThe recent advances in IT and technology are forcing changes in the approach to educating society. In the 20th century, life-long learning was understood as educating adults in order to improve their occupational qualifications. Life-long learning allows the needs of the present-day world to be addressed through providing the individual with education at every stage of his/her life various forms. The search for a new model...
-
Koncepcja systemu wspomagania decyzji nawigatora statku opartego na ewolucyjnym planowaniu manewrów antykolizyjnych
PublikacjaArtykuł przedstawia koncepcję systemu wspomagania decyzji nawigatora statku opartego na wątkach badań prowadzonych wcześniej przez autora. System będzie rozszerzał funkcjonalność systemów dotychczasowych o możliwość szczegółowego planowania bezpiecznej trajektorii statku na wodach zamkniętych, z dużą liczbą statków obcych i ograniczeniami toru wodnego. Artykuł zawiera dyskusję możliwych podejść do planowania manewrów, optymalizacji...