Filtry
wszystkich: 2092
-
Katalog
- Publikacje 1389 wyników po odfiltrowaniu
- Czasopisma 468 wyników po odfiltrowaniu
- Konferencje 27 wyników po odfiltrowaniu
- Wydawnictwa 2 wyników po odfiltrowaniu
- Osoby 80 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Kursy Online 78 wyników po odfiltrowaniu
- Wydarzenia 8 wyników po odfiltrowaniu
- Dane Badawcze 30 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: offline policy learning
-
Public Space in Medium-sized Town - Role in Development Policy
PublikacjaMiasta średniej wielkości odgrywają ważną, choć często niedacenianą rolę w sieci osadniczej Polski. Artykuł przedstawia specyfikę tej grupy miast w warunkach wdrażania reform ekonomicznej i terytorialnej. Szczególna uwaga skupiona jest na zjawisku, które nasiliło się od początku XXI wieku - zabiegach władz mających na celu zwiększenie atrakcyjności przestrzeni publicznych. W tekście przeanalizowane zostały różne strategie rozwoju,...
-
Business angels in the Czech Republic: characteristics and a classification with policy implications
Publikacja -
India’s ‘Neighbourhood First’ policy and the Belt & Road Initiative (BRI)
Publikacja -
Municipality’s financial potencial and policy of flood risk management in Poland
Publikacja -
A POLICY OF DEVELOPMENT OF POST-MINING LAND ON THE EXAMPLE OF ZIELONA GÓRA
Publikacja -
THE ONLINE APPLICATION AND E-LEARNING IN THE COMPETENCE-BASED MANAGEMENT IN PUBLIC ADMINISTRATION ORGANIZATIONS
PublikacjaThe integration of effective management of work-related processes and utilization of human resources potential leads to the development of organization. The purpose of this paper was to examine how the principles of competences-based management can be introduced to enhance organization’s effectiveness in human resources management. A model of assessment and development of competences-based management, embracing an online application...
-
Concrete mix design using machine learning
PublikacjaDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublikacjaIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublikacjaThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublikacjaThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Supporting First Year Students Through Blended-Learning - Planning Effective Courses and Learner Support
PublikacjaHigher education has been actively encouraged to find more effective and flaxible delivery models to provide all students with access to good quality learning experiences. This paper describes students opinion about using e-learning techniques and their participation in courses provided in different ways as additional help and expectations of first year students.
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublikacjaConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Vident-real: an intra-oral video dataset for multi-task learning
Dane BadawczeWe introduce Vident-real, a large dataset of 100 video sequences of intra-oral scenes from real conservative dental treatments performed at the Medical University of Gdańsk, Poland. The dataset can be used for multi-task learning methods including:
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change: with Focus on Organizational Culture and Organizational Learning
PublikacjaTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...
-
Adaptive Dynamical Systems Modelling of Transformational Organizational Change with Focus on Organizational Culture and Organizational Learning
PublikacjaTransformative Organizational Change becomes more and more significant both practically and academically, especially in the context of organizational culture and learning. However computational modeling and a formalization of organizational change and learning processes are still largely unexplored. This paper aims to provide an adaptive network model of transformative organizational change and translate a selection of organizational...
-
Open source solution LMS for supporting e-learning/blended learning engineers
PublikacjaW artykule zaprezentowano darmowe systemy zarządzania kształceniem na odległość wspomagające e-learningowe/mieszane nauczanie inżynierów. Pierwszy system TeleCAD został opracowany w ramach projektu Leonardo da Vinci (1998-2001). System TeleCAD był propozycją w projekcie V Ramowy CURE (2003-2006). W roku 2003 dzięki projektowi Leonardo da Vinci EMDEL (2001-2005) Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej wybrało system...
-
Distance learning trends: introducing new solutions to data analysis courses
PublikacjaNowadays data analysis of any kind becomes a piece of art. The same happens with the teaching processes of statistics, econometrics and other related courses. This is not only because we are facing (and are forced to) teach online or in a hybrid mode. Students expect to see not only the theoretical part of the study and solve some practical examples together with the instructor. They are waiting to see a variety of tools, tutorials,...
-
LOS and NLOS identification in real indoor environment using deep learning approach
PublikacjaVisibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Detecting Lombard Speech Using Deep Learning Approach
PublikacjaRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
User -friendly E-learning Platform: a Case Study of a Design Thinking Approach Use
PublikacjaE-learning systems are very popular means to support the teaching process today. These systems are mainly used by universities as well as by commercial training centres. We analysed several popular e-learning platforms used in Polish universities and find them very unfriendly for the users. For this reason, the authors began the work on the creation of a new system that would be not only useful, but also usable for students, teachers...
-
Training of Deep Learning Models Using Synthetic Datasets
PublikacjaIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Are We Facing a Tsunami of Vaccine Hesitancy or Outdated Pandemic Policy in Times of Omicron? Analyzing Changes of COVID-19 Vaccination Trends in Poland
PublikacjaIn this study, we analyzed Polish COVID-19 vaccination data until January 2023 from the European Centre for Disease Prevention and Control to understand individual decision making during the milder Omicron wave. Our findings show a general decline in subsequent vaccine uptake. As the number of government-provided doses increased, completion rates among certain low-risk groups dropped to less than 1%. Elderly individuals, especially...
-
Looking through the past: better knowledge retention for generative replay in continual learning
PublikacjaIn this work, we improve the generative replay in a continual learning setting to perform well on challenging scenarios. Because of the growing complexity of continual learning tasks, it is becoming more popular, to apply the generative replay technique in the feature space instead of image space. Nevertheless, such an approach does not come without limitations. In particular, we notice the degradation of the continually trained...
-
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
PublikacjaTraffic-induced vibrations may cause various damages to buildings located near the road, including cracking of plaster, cracks in load-bearing elements or even collapse of the whole structure. Measurements of vibrations of real buildings are costly and laborious. Therefore the aim of the research is to propose the original numerical algorithm which allows us to predict, with high probability, the nega-tive dynamic impact of traffic-induced...
-
The Bridge of Knowledge – defining and implementing national Open Access policy by Polish universities. Gdansk University of Technology perspective
PublikacjaThe European Commission states that Open Access to scientific resources funded by the European Union shall facilitate the use of research results financed from the public funds. Moreover, it will cause an increase in the innovative capacity of Europe. The Open Access landscape is determined by several factors such as mandates. The open mandate may be voluntary or mandatory and implemented at the institutional, national or international...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Systemy z Uczeniem Maszynowym / Systems with Machine Learning
Kursy Online -
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublikacjaAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublikacjaHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublikacjaMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
An Adaptive Network Model Simulating the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublikacjaThis paper investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organizational culture results in better mistake management and thus better organizational learning, (2) Effective organizational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader’s behavior must align for the best learning effects....
-
An Adaptive Network Model Simulating the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublikacjaThis paper investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organizational culture results in better mistake management and thus better organizational learning, (2) Effective organizational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader's behavior must align for the best learning effects....
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublikacjaMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment
PublikacjaThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublikacjaBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
EU's Energy Policy and Assessing Europe's Spiraling Energy Security Crises
Publikacja -
Energy Policy until 2050—Comparative Analysis between Poland and Germany
Publikacja -
The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy
Publikacja -
MANAGEMENT OF THE POST-MINING AREAS IN DEVELOPMENT POLICY OF ZIELONA GORA (POLAND)
Publikacja -
Poland’s polar policy in the face of the Arctic Council 2022 cooperation crisis
Publikacja -
THE COVID-19 DISEASE AND POLICY RESPONSE TO MITIGATE THE ECONOMIC IMPACT IN THE EU
Publikacja -
Modus operandi of Qatar Resistance Policy against “Anti-Terror Quartet”
Publikacja -
Can Evaluation Patterns Enable End Users to Evaluate the Quality of an e-learning System? An Exploratory Study.
PublikacjaThis paper presents the results of an exploratory study whose main aim is to verify if the Pattern-Based (PB) inspection technique enables end users to perform reliable evaluation of e-learning systems in real work-related settings. The study involved 13 Polish and Italian participants, who did not have an HCI background, but used e-learning platforms for didactic and/or administrative purposes. The study revealed that the participants...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublikacjaAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Strategic Flexibility as a Mediator in Relationship between Managerial Decisions and Organizational Learning: Ambidexterity Perspective
PublikacjaPurpose: The purpose of the article is to determine strategic flexibility in the relationship between managerial decisions and organizational learning. The analyses are conducted in the ambidexterity convection. Design/Methodology/Approach: The study was conducted at a textile company. The company is a leader in the textile recycling industry in Poland. Empirical data were collected using the PAPI technique. The survey questionnaire...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublikacjaThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublikacjaThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...