Wyniki wyszukiwania dla: HIGHER ORDER SHELL THEORY
-
A higher order shell element for wave propagation in isotropic shell structures
PublikacjaThe presents the new multi mode higher order shell element for wave propagation problems in shell structures.
-
Galerkin formulations of isogeometric shell analysis: Alleviating locking with Greville quadratures and higher-order elements
PublikacjaWe propose new quadrature schemes that asymptotically require only four in-plane points for Reissner–Mindlin shell elements and nine in-plane points for Kirchhoff–Love shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree p of the elements. The quadrature points are Greville abscissae associated with pth-order B-spline basis functions whose continuities depend on the specific...
-
Galerkin formulations with Greville quadrature rules for isogeometric shell analysis: Higher order elements and locking
PublikacjaWe propose new Greville quadrature schemes that asymptotically require only four in-plane points for Reissner-Mindlin (RM) shell elements and nine in-plane points for Kirchhoff-Love (KL) shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree of the elements. For polynomial degrees 5 and 6, the approach delivers high accuracy, low computational cost, and alleviates membrane and...
-
A higher order transversely deformable shell-type spectral finite element for dynamic analysis of isotropic structures
PublikacjaThis paper deals with certain aspects related to the dynamic behaviour of isotropic shell-like structures analysed by the use of a higher order transversely deformable shell-type spectral finite element newly formulated and the approach known as the Time-domain Spectral Finite Element Method (TD-SFEM). Although recently this spectral approach is reported in the literature as a very powerful numerical tool used to solve various...
-
A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition
PublikacjaA drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublikacjaIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
PublikacjaIn the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing...
-
Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures
Publikacja -
On mechanics of piezocomposite shell structures
PublikacjaThis study presents an original and novel investigation into the mechanics of piezo-flexo-magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear deformation shell model, stresses and strains are acquired. By imposing Hamilton's principle and the von Kármán approach, the governing equations...
-
Elastoplastic law of Cosserat type in shell theory with drilling rotation
PublikacjaWithin the framework of six-parameter non-linear shell theory, with strain measures of the Cosserat type, we develop small-strain J2-type elastoplastic constitutive relations. The relations are obtained from the Cosserat plane stress relations assumed in each shell layer, by through-the-thickness integration employing the first-order shear theory. The formulation allows for unlimited translations and rotations. The constitutive...
-
Laminated plates and shells - first ply failure analysis within 6-parameter shell theory
PublikacjaThis work describes Tsai-Wu and Hashin criteria modifications, dictated by nonlinear 6-parameter shell theory with asymmetric strain measures and drilling rotation. The material law is based on standard orthotropic elastic constants for a non-polar continuum, under plane state of stress. First ply failure loads of cylindrical panel subjected to pressure and flat compressed plate are estimated by means of Finite Element Analysis....
-
Elastoplastic material law in 6-parameter nonlinear shell theory
PublikacjaWe develop the elastoplastic constitutive relations for nonlinear exact 6-parameter shell theory. A J2-type theory with strain hardening is formulated that takes into account asymmetric membrane strain measures. The incremental equations are solved using implicit Euler scheme with closest point projection algorithm. The presented test example shows the correctness of the proposed approach. Influence of micropolar material parameters...
-
Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory
PublikacjaWithin the framework of the nonlinear 6-parameter shell theory with the drilling rotation and asymmetric stress measures, the modifications of Tsai-Wu and Hashin laminate failure initiation criteria are proposed. These improvements enable to perform first ply failure estimations taking into account the non-symmetric stress measures. In order to check the validity of the proposed criteria, finite element analyses are performed with...
-
On rotational instability within the nonlinear six-parameter shell theory
PublikacjaWithin the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublikacjaWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublikacjaWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
FEM analysis of composite materials failure in nonlinear six field shell theory
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Recent Achievements in Constitutive Equations of Laminates and Functionally Graded Structures Formulated in the Resultant Nonlinear Shell Theory
PublikacjaThe development of constitutive equations formulated in the resultant nonlinear shell theory is presented. The specific features of the present shell theory are drilling rotation naturally included in the formulation and asymmetric measures of strains and stress resultants. The special attention in the chapter is given to recent achievements: progressive failure analysis of laminated shells and elastoplastic constitutive relation...
-
A general theory for anisotropic Kirchhoff–Love shells with in-plane bending of embedded fibers
PublikacjaThis work presents a generalized Kirchhoff–Love shell theory that can explicitly capture fiber-induced anisotropy not only in stretching and out-of-plane bending, but also in in-plane bending. This setup is particularly suitable for heterogeneous and fibrous materials such as textiles, biomaterials, composites and pantographic structures. The presented theory is a direct extension of classical Kirchhoff–Love shell theory to incorporate...
-
Progressive failure analysis of laminates in the framework of 6-field nonlinear shell theory
PublikacjaThe paper presents the model of progressive failure analysis of laminates incorporated into the 6-field non-linear shell theory with non-symmetrical strain measures of Cosserat type. Such a theory is specially recommended in the analysis of shells with intersections due to its specific kinematics including the so-called drilling rotation. As a consequence of asymmetry of strain measures, modified laminates failure criteria must...
-
Estimation of Failure Initiation in Laminated Composites by means of Nonlinear Six-Field Shell Theory and FEM
PublikacjaThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublikacjaWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
Equivalent 4-node enhanced assumed strain and hybrid stress shell elements in 6-parameter theory
PublikacjaWe discuss the equivalence of semi-enhanced assumed strain (EAS) and semi-hybrid stress (SEM) shell finite elements. We use the general nonlinear 6-field shell theory with kinematics composed of generalized displacements composed of the translation field and the rotation field. Due to the presence of rotation tensor the elements have naturally six nodal engineering degrees of freedom. We propose interpolation for a strain field...
-
ON AXIALLY SYMMETRIC SHELL PROBLEMS WITH REINFORCED JUNCTIONS
PublikacjaWithin the framework of the six-parameter nonlinear resultant shell theory we consider the axially symmetric deformations of a cylindrical shell linked to a circular plate. The reinforcement in the junction of the shell and the plate is taken into account. Within the theory the full kinematics is considered. Here we analyzed the compatibility conditions along the junction and their in uence on the deformations and stressed state.
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublikacjaIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory
PublikacjaThe paper presents the formulation of the elastic constitutive law for functionally graded materials (FGM) on the grounds of nonlinear 6-parameter shell theory with the 6th parameter being the drilling degree of freedom. The material law is derived by through-the-thickness integration of the Cosserat plane stress equations. The constitutive equations are formulated with respect to the neutral physical surface. The influence of...
-
Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field
PublikacjaThis paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order...
-
Biomimetic torene shells
PublikacjaThe genome inside the eukaryotic cells is guarded by a unique shell structure, called the nuclear envelope (NE), made of lipid membranes. This structure has an ultra torus topology with thousands of torus-shaped holes that imparts the structure a high flexural stiffness. Inspired from this biological design, here we present a novel ‘‘torene’’ architecture to design lightweight shell structures with ultra-stiffness for engineering...
-
Theory of valence-band and core-level photoemission from plutonium dioxide
PublikacjaThe correlated-band theory implemented as a combination of the local-density approximation with the dynamical mean-field theory is applied to PuO2. An insulating electronic structure, consistent with the experimental valence-band photoemission spectra, is obtained. The calculations yield a nonmagnetic ground state that is characterized by a noninteger filling of the plutonium 5f shell. The noninteger filling as well as the satellites...
-
A Nonlinear Model of a Mesh Shell
PublikacjaFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...
-
Correlation between natural frequencies and buckling load in a stiffened shell
PublikacjaThe paper deals with correlation between natural frequencies and buckling load of a stiffened shell composed of corrugated sheets and vertical stiffeners (columns). The simplified shell segment represents the buckling behaviour of a whole silo with sparsely distributed columns. The paper covers variants of linear buckling anal-yses, dynamic eigenvalue analyses and geometrically non-linear analyses of a segment modelled with shell...
-
On refined constitutive equations in the six-field theory of elastic shells
PublikacjaWithin the resultant six-field shell theory, the second approximation to the complementary energy density of an isotropic elastic shell undergoing small strains is constructed. In this case, the resultant drilling couples are expressed explicitly by the stress resultants and stress couples as well as by amplitudes of the quadratic and cubic distributions of an intrinsic deviation vector. The refined 2D strain-stress and stress-strain...
-
On exact two-dimensional kinematics for the branching shells
PublikacjaWe construct the two-dimensional (2D) kinematics which is work-conjugate to the exact 2D local equilibrium conditions of the non-linear theory of branching shells. It is shown that the compatible shell displacements consist of the translation vector and rotation tensor fields defined on the regular parts of the shell base surface as well as independently on the singular surface curve modelling the shell branching. Several characteristic...
-
2-D constitutive equations for orthotropic Cosserat type laminated shells in finite element analysis
PublikacjaWe propose 2-D Cosserat type orthotropic constitutive equations for laminated shells for the purpose of initial failure estimation in a laminate layer. We use nonlinear 6-parameter shell theory with asymmetric membrane strain measures and Cosserat kinematics as the framework. This theory is specially dedicated to the analysis of irregular shells, inter alia, with orthogonal intersections, since it takes into account the drilling...
-
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis...
-
On phase equilibrium of an elastic liquid shell with wedge disclination
PublikacjaBased on the six-parameter shell theory we consider the phase equilibrium of a two-phase liquid membrane containing a wedge disclination. The considered problems are related to modelling of phase transitions in biological or lipid membranes. In order to capture the membrane behaviour we consider a special case of elastic shells which energy is invariant under major transformations of a reference configuration and can be treated...
-
On constitutive relations in the resultatnt non-linear theory of shells
PublikacjaThe authors summarize their current research in the field of constitutive modelling in the framework of non-linear 6-parameter shell theory. In particular the description of isotropic, multilayered composite and functionally graded shells is presented.
-
Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells
PublikacjaMixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based onthe three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotationfields, both strain and stress resultant fields are treated as independent. The elements are derived in the frame-work of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells.The...
-
Modeling of Composite Shells in 6-Parameter Nonlinear Theory with Drilling Degree of Freedom
PublikacjaWithin the framework of a 6-parameter nonlinear shell theory, with strain measures of Cosserat type, constitutive relations are proposed for thin elastic composite shells. The material law is expressed in terms of five engineering constants of classical anisotropic continuum plus an additional parameter accounting for drilling stiffness. The theory allows for unlimited displacements and rotations. A number of examples are presented...
-
On the correspondence between two- and three-dimensional Eshelby tensors
PublikacjaWe consider both three-dimensional (3D) and two-dimensional (2D) Eshelby tensors known also as energy–momentum tensors or chemical potential tensors, which are introduced within the nonlinear elasticity and the resultant nonlinear shell theory, respectively. We demonstrate that 2D Eshelby tensor is introduced earlier directly using 2D constitutive equations of nonlinear shells and can be derived also using the throughthe-thickness...
-
The electronic structure of p-xylylene and its reactivity with vinyl molecules
PublikacjaThe electronic states of p-xylylene molecule were described at the multi-configurational CASSCF/MRMP2 level of theory. The closed-shell singlet state representing the quinoidal p-xylylene molecule was pre-dicted to be the ground electronic state whereas the triplet (benzoidal) and the singlet open-shell states were found to be much higher in energy (by 159 and 423 kJ/mol, respectively, as found at the CASSCF(8,8)/6-31+G(d) level)....
-
Webquest- dobra praktyka w e-Learningu
PublikacjaW dobie informatyzacji i pokonywania barier wdrażania e-technologii na uczelniach wyższych uważa się, że jedną z najczęściej stosowanych aktywizujących technik nauczania wśród nauczycieli akademickich jest metoda projektu (ang. project-based learning). W niniejszym opracowaniu proponuje się zastosowanie w procesie edukacji na wyższej uczelni, metody webquest. Jest ona dużo rzadziej stosowana w praktyce. Opracowano ją w oparciu...
-
Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells
PublikacjaWe formulate the exact, resultant equilibrium conditions for the non-linear theory of branching and self-intersecting shells. The conditions are derived by performing direct through-the-thickness integration in the global equilibrium conditions of continuum mechanics. At each regular internal and boundary point of the base surface our exact, local equilibrium equations and dynamic boundary conditions are equivalent, as expected,...
-
The Influence of Shear Deformation in analysis of plane frames
PublikacjaThe focus of the paper is to investigate the influence of shear deformation effect on the distribution of internal forces and frame deformation. To estimate shear deformation effect, the Timoshenko beam theory and the concept of shear deformation coefficients are used. Analysis of example frames gives the possibility to evaluate what have the most impact on size of shear deformation and in which type of frames the shear deformation...
-
Geometrically Nonlinear Analysis of Functionally Graded Shells Based on 2-D Cosserat Constitutive Model
PublikacjaIn this paper geometrically nonlinear analysis of functionally graded shells in 6-parameter shell theory is presented. It is assumed that the shell consists of two constituents: ceramic and metal. The mechanical properties are graded through the thickness and are described by power law distribution. Formulation based on 2-D Cosserat constitutive model is used to derive constitutive relation for functionally graded shells. Numerical...
-
Determination of Failure Causes of a Steam Turbine Casing
PublikacjaThe paper presents results of research and failure analysis undertaken to determine failure causes of a steam turbine casing. After 130,000 hours of service the crack in a outer shell of the turbine casing was found. The inner shell of the casing was made of cast steel grade G21CrMoV5-7, and the outer shell of grade G20CrMo4-5. Following research were performed in order to determine causes of the casing failure: chemical analysis;...
-
On Solvability of Boundary Value Problems for Elastic Micropolar Shells with Rigid Inclusions
PublikacjaIn the framework of the linear theory of micropolar shells, existence and uniqueness theorems for weak solutions of boundary value problems describing small deformations of elastic micropolar shells connected to a system of absolutely rigid bodies are proved. The definition of a weak solution is based on the principle of virial movements. A feature of this problem is non-standard boundary conditions at the interface between the...
-
Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles
PublikacjaSuperparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles were characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic...
-
THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THIN-WALLED BEARING SHELL’S DESIGN PARAMETERS AND ASSEMBLY CONDITIONS ON THE HOLDING TORQUE INSIDE A HOUSING BORE OF A CONNECTING ROD
PublikacjaThe aim of the work was the experimental and theoretical evaluation of the influence of the most important parameters determining the holding torque of a thin-walled bearing shell inside a housing bore of a connecting rod. The main investigated parameters were defned by authors experience in this feld. In the frst stage of research, a special test stand was designed in order to allow measuring the real values of the friction torque...
-
Weakly Hydrated Solute of Mixed Hydrophobic–Hydrophilic Nature
PublikacjaInfrared (IR) spectroscopy is a commonly used and invaluable tool in studies of solvation phenomena in aqueous solutions. Concurrently, density functional theory calculations and ab initio molecular dynamics simulations deliver the solvation shell picture at the molecular detail level. The mentioned techniques allowed us to gain insights into the structure and energy of the hydrogen bonding network of water molecules around methylsulfonylmethane...