Wyniki wyszukiwania dla: elementary graph-set descriptor - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: elementary graph-set descriptor

Wyniki wyszukiwania dla: elementary graph-set descriptor

  • Comparison of hydrogen bonds and diverse weak interactions of the nitro group in 2-methyl-4-nitroanilinium nitrate, bisulfate and two hexafluoridosilicates: elementary graph-set approach

    Crystal structures of (H2m4na)NO3 (1), (H2m4na)HSO4 (2), (H2m4na)2SiF6 (3) and (H2m4na)2SiF6*2H2O (4), where 2m4na = 2-methyl-4-nitroaniline, are presented. Two layers of interactions occur in the structures, N—H...O/F hydrogen bonds and interactions with the nitro group. Although diverse, hydrogen-bonding patterns are compared with each other by means of interrelations among elementary graph-set descriptors and descriptors of hydrogen-bonding...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Color-based Detection of Bleeding in Endoscopic Images

    In this paper a color descriptor designed for bleeding detection in endoscopic images is proposed. The development of the algorithm was carried out on a representative training set of 36 images of bleeding and 25 clear images. Another 38 bleeding and 26 normal images were used in the final stage as a test set. All of the considered images were extracted from separate endoscopic examinations. The experiments include color distribution...

    Pełny tekst do pobrania w portalu

  • On proper (1,2)‐dominating sets in graphs

    Publikacja

    In 2008, Hedetniemi et al. introduced the concept of (1,)-domination and obtained some interesting results for (1,2) -domination. Obviously every (1,1) -dominating set of a graph (known as 2-dominating set) is (1,2) -dominating; to distinguish these concepts, we define a proper (1,2) -dominating set of a graph as follows: a subset is a proper (1,2) -dominating set of a graph if is (1,2) -dominating and it is not a (1,1) -dominating...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • On trees with double domination number equal to total domination number plus one

    Publikacja

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Pełny tekst do pobrania w portalu

  • On trees with double domination number equal to 2-outer-independent domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • On the ratio between 2-domination and total outer-independent domination numbers of trees

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The 2-domination (total outer-independent domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (total...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An upper bound for the double outer-independent domination number of a tree

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...

    Pełny tekst do pobrania w portalu

  • 2-outer-independent domination in graphs

    Publikacja

    We initiate the study of 2-outer-independent domination in graphs. A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D, and the set V(G)\D is independent. The 2-outer-independent domination number of a graph G is the minimum cardinality of a 2-outer-independent dominating set of G. We show that if a graph has minimum degree at least two,...

    Pełny tekst do pobrania w portalu

  • An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283-300] established the following lower bound on the 2-domination...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Interpolation properties of domination parameters of a graph

    An integer-valued graph function π is an interpolating function if a set π(T(G))={π(T): T∈TT(G)} consists of consecutive integers, where TT(G) is the set of all spanning trees of a connected graph G. We consider the interpolation properties of domination related parameters.

    Pełny tekst do pobrania w portalu

  • Weakly connected Roman domination in graphs

    A Roman dominating function on a graph G=(V,E) is defined to be a function f :V → {0,1,2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v)=2. A dominating set D⊆V is a weakly connected dominating set of G if the graph (V,E∩(D×V)) is connected. We define a weakly connected Roman dominating function on a graph G to be a Roman dominating function such that the set...

    Pełny tekst do pobrania w portalu

  • Total domination in versus paired-domination in regular graphs

    A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...

    Pełny tekst do pobrania w portalu

  • Global defensive sets in graphs

    In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC ( X ) = true if and only if | N [ X ] ∩ S | ≥ | N [ X ] \ S | holds, where N [ X ] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for...

    Pełny tekst do pobrania w portalu

  • A lower bound on the double outer-independent domination number of a tree

    Publikacja

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We...

    Pełny tekst do pobrania w portalu

  • Weakly convex and convex domination numbers of some products of graphs

    If $G=(V,E)$ is a simple connected graph and $a,b\in V$, then a shortest $(a-b)$ path is called a $(u-v)$-{\it geodesic}. A set $X\subseteq V$ is called {\it weakly convex} in $G$ if for every two vertices $a,b\in X$ exists $(a-b)$- geodesic whose all vertices belong to $X$. A set $X$ is {\it convex} in $G$ if for every $a,b\in X$ all vertices from every $(a-b)$-geodesic belong to $X$. The {\it weakly convex domination number}...

  • A lower bound on the total outer-independent domination number of a tree

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Pełny tekst do pobrania w portalu

  • Unicyclic graphs with equal total and total outer-connected domination numbers

    Publikacja

    Let G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Domination-Related Parameters in Rooted Product Graphs

    Abstract A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those sets of vertices of a graph satisfying some domination property together with other conditions on the vertices of G. Here, we investigate several domination-related parameters in rooted product graphs.

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An upper bound on the 2-outer-independent domination number of a tree

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Independent Domination Subdivision in Graphs

    Publikacja

    - GRAPHS AND COMBINATORICS - Rok 2021

    A set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...

    Pełny tekst do pobrania w portalu

  • Graphs with isolation number equal to one third of the order

    Publikacja

    - DISCRETE MATHEMATICS - Rok 2024

    A set D of vertices of a graph G is isolating if the set of vertices not in D and with no neighbor in D is independent. The isolation number of G, denoted by \iota(G) , is the minimum cardinality of an isolating set of G. It is known that \iota(G) \leq n/3 , if G is a connected graph of order n, , distinct from C_5 . The main result of this work is the characterisation of unicyclic and block graphs of order n with isolating number...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An upper bound on the total outer-independent domination number of a tree

    Publikacja

    A total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...

    Pełny tekst do pobrania w portalu

  • Bounds on the vertex-edge domination number of a tree

    Publikacja

    - COMPTES RENDUS MATHEMATIQUE - Rok 2014

    A vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...

    Pełny tekst do pobrania w portalu

  • On trees attaining an upper bound on the total domination number

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • On trees with double domination number equal to 2-domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Double bondage in graphs

    Publikacja

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G, denoted by gamma_d(G), is the minimum cardinality of a double dominating set of G. The double bondage number of G, denoted by b_d(G), is the minimum cardinality among all sets...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Common Independence in Graphs

    Publikacja

    - Symmetry-Basel - Rok 2021

    Abstract: The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|...

    Pełny tekst do pobrania w portalu

  • On bipartization of cubic graphs by removal of an independent set

    Publikacja

    - DISCRETE APPLIED MATHEMATICS - Rok 2016

    We study a new problem for cubic graphs: bipartization of a cubic graph Q by deleting sufficiently large independent set.

    Pełny tekst do pobrania w portalu

  • Paired domination versus domination and packing number in graphs

    Publikacja

    Given a graph G = (V(G), E(G)), the size of a minimum dominating set, minimum paired dominating set, and a minimum total dominating set of a graph G are denoted by γ (G), γpr(G), and γt(G), respectively. For a positive integer k, a k-packing in G is a set S ⊆ V(G) such that for every pair of distinct vertices u and v in S, the distance between u and v is at least k + 1. The k-packing number is the order of a largest kpacking and...

    Pełny tekst do pobrania w portalu

  • angielski

    Publikacja

    - Australasian Journal of Combinatorics - Rok 2024

    A subset D of V (G) is a dominating set of a graph G if every vertex of V (G) − D has at least one neighbour in D; let the domination number γ(G) be the minimum cardinality among all dominating sets in G. We say that a graph G is γ-q-critical if subdividing any q edges results in a graph with domination number greater than γ(G) and there exists a set of q − 1 edges such that subdividing these edges results in a graph with domination...

    Pełny tekst do pobrania w portalu

  • All graphs with paired-domination number two less than their order

    Publikacja

    Let G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...

    Pełny tekst do pobrania w portalu

  • 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of G, denoted by b_2(G), is the minimum cardinality among all sets of edges E' subseteq E such that gamma_2(G-E') > gamma_2(G). If for every E' subseteq E we have...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • The convex domination subdivision number of a graph

    Publikacja

    Let G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...

    Pełny tekst do pobrania w portalu

  • Isolation Number versus Domination Number of Trees

    Publikacja
    • M. Lemańska
    • M. J. Souto-Salorio
    • A. Dapena
    • F. Vazquez-Araujo

    - Mathematics - Rok 2021

    If G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....

    Pełny tekst do pobrania w portalu

  • Some Progress on Total Bondage in Graphs

    Publikacja

    - GRAPHS AND COMBINATORICS - Rok 2014

    The total bondage number b_t(G) of a graph G with no isolated vertex is the cardinality of a smallest set of edges E'⊆E(G) for which (1) G−E' has no isolated vertex, and (2) γ_t(G−E')>γ_t(G). We improve some results on the total bondage number of a graph and give a constructive characterization of a certain class of trees achieving the upper bound on the total bondage number.

    Pełny tekst do pobrania w portalu

  • Bondage number of grid graphs

    Publikacja

    The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number of G. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some strong product and direct product of two paths.

    Pełny tekst do pobrania w portalu

  • Non-isolating bondage in graphs

    A dominating set of a graph $G = (V,E)$ is a set $D$ of vertices of $G$ such that every vertex of $V(G) \setminus D$ has a neighbor in $D$. The domination number of a graph $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. The non-isolating bondage number of $G$, denoted by $b'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G-E') \ge 1$ and $\gamma(G-E')...

    Pełny tekst do pobrania w portalu

  • Non-isolating 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The non-isolating 2-bondage number of G, denoted by b_2'(G), is the minimum cardinality among all sets of edges E' subseteq E such that delta(G-E') >= 1 and gamma_2(G-E') > gamma_2(G)....

    Pełny tekst do pobrania w portalu

  • Dynamic F-free Coloring of Graphs

    Publikacja

    - GRAPHS AND COMBINATORICS - Rok 2018

    A problem of graph F-free coloring consists in partitioning the vertex set of a graph such that none of the resulting sets induces a graph containing a fixed graph F as an induced subgraph. In this paper we consider dynamic F-free coloring in which, similarly as in online coloring, the graph to be colored is not known in advance; it is gradually revealed to the coloring algorithm that has to color each vertex upon request as well...

    Pełny tekst do pobrania w portalu

  • Bounds on the Cover Time of Parallel Rotor Walks

    Publikacja

    - Rok 2014

    The rotor-router mechanism was introduced as a deterministic alternative to the random walk in undirected graphs. In this model, a set of k identical walkers is deployed in parallel, starting from a chosen subset of nodes, and moving around the graph in synchronous steps. During the process, each node maintains a cyclic ordering of its outgoing arcs, and successively propagates walkers which visit it along its outgoing arcs in...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Conley-Morse graphs for a two-dimensional discrete neuron model (low resolution)

    This dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.

  • Conley-Morse graphs for a two-dimensional discrete neuron model (limited range)

    This dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.

  • Conley-Morse graphs for a two-dimensional discrete neuron model (full range)

    This dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.

  • On trees with equal 2-domination and 2-outer-independent domination numbers

    For a graph G = (V,E), a subset D \subseteq V(G) is a 2-dominating set if every vertex of V(G)\D$ has at least two neighbors in D, while it is a 2-outer-independent dominating set if additionally the set V(G)\D is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2-dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees...

    Pełny tekst do pobrania w portalu

  • On trees with equal domination and total outer-independent domination numbers

    Publikacja

    For a graph G=(V,E), a subset D subseteq V(G) is a dominating set if every vertex of V(G)D has a neighbor in D, while it is a total outer-independent dominating set if every vertex of G has a neighbor in D, and the set V(G)D is independent. The domination (total outer-independent domination, respectively) number of G is the minimum cardinality of a dominating (total outer-independent dominating, respectively) set of G. We characterize...

  • On Computational Aspects of Greedy Partitioning of Graphs

    Publikacja

    - Rok 2017

    In this paper we consider a problem of graph P-coloring consisting in partitioning the vertex set of a graph such that each of the resulting sets induces a graph in a given additive, hereditary class of graphs P. We focus on partitions generated by the greedy algorithm. In particular, we show that given a graph G and an integer k deciding if the greedy algorithm outputs a P-coloring with a least k colors is NP-complete for an infinite...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Conley-Morse graphs for a non-linear Leslie population model with 2 varying parameters

    This dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "A database schema for the analysis of global dynamics of multiparameter systems" by Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk, published in SIAM Journal on Applied Dynamical Systems (SIADS),...

  • Conley-Morse graphs for a non-linear Leslie population model with 3 varying parameters

    This dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "A database schema for the analysis of global dynamics of multiparameter systems" by Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk, published in SIAM Journal on Applied Dynamical Systems (SIADS),...

  • Strategic balance in graphs

    For a given graph G, a nonempty subset S contained in V ( G ) is an alliance iff for each vertex v ∈ S there are at least as many vertices from the closed neighbourhood of v in S as in V ( G ) − S. An alliance is global if it is also a dominating set of G. The alliance partition number of G was defined in Hedetniemi et al. (2004) to be the maximum number of sets in a partition of V ( G ) such that each set is an alliance. Similarly,...

    Pełny tekst do pobrania w portalu

  • Computational aspects of greedy partitioning of graphs

    In this paper we consider a variant of graph partitioning consisting in partitioning the vertex set of a graph into the minimum number of sets such that each of them induces a graph in hereditary class of graphs P (the problem is also known as P-coloring). We focus on the computational complexity of several problems related to greedy partitioning. In particular, we show that given a graph G and an integer k deciding if the greedy...

    Pełny tekst do pobrania w portalu