Filters
total: 1796
filtered: 127
Search results for: POLYURETHANE, POLYLACTIDE, TISSUE ENGINEERING, SKIN SCAFFOLD
-
3D porous graphene-based structures- synthesis and applications
PublicationPorous carbon-based materials are of the great industrial and academic interest due to their high surface area, low density, good electrical conductivity, chemical inertness and low cost of fabrication. Up to now, the main approach to obtain porous carbon structures has involved the pyrolysis of carbonaceous natural or synthetic precursors. After the isolation of graphene, the interest in 3D porous graphene-based structures (called...
-
REVIEW OF CURRENT RESEARCH ON CHITOSAN AS A RAW MATERIAL IN THREE-DIMENSIONAL PRINTING TECHNOLOGY IN BIOMEDICAL APPLICATIONS
PublicationThree-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However,...
-
Wpływ stopowania laserowego z użyciem nanorurek węglowych stopu Ti13Nb13Zr do zastosowań biomedycznych na jego wybrane własności mechaniczne
PublicationDo eksperymentu użyto stopu tytanu Ti13Nb13Zr, który ze względu na swój skład chemiczny i właściwości mechaniczne stanowi materiał do zastosowań w inżynierii medycznej. Celem pracy była ocena wpływu stopowania laserowego stopu Ti13Nb13Zr z powłoką z wielościennych nanorurek węglowych na jego właściwości mechaniczne (chropowatość, nanotwardość, moduł Younga). Do wytworzenia powłoki węglowej wykorzystano metodę osadzania elektroforetycznego (EDP)....
-
Modelling of some stealth features for a small navy ship at the concept design stage - part II
PublicationIn the paper a few problems associated with modelling the basic stealth features for a small ship at the concept design stage are introduced. One problem concerns the modification of the immersed ship hull using the rapid change of the ship loading condition. The second is associated with the modification of the ship boundary layer by the hull skin cover. The other stealth features of the ship are not presented in this paper. The...
-
Biobased Ultralow-Density Polyurethane Foams with Enhanced Recyclability
PublicationPolyurethane (PUR) foams are widely used in many engineering applications, but their efficient recycling has remained a major challenge for many years. This study presents a novel strategy of incorporating hydrolyzable ester units into the PUR structure to enhance PUR foam recyclability. The present ecodesign concept of PUR materials enables fully the replacement of petrochemical polyols with biobased alternatives and production...
-
Modelling of some stealth features for a small navy ship at the concept design stage.
PublicationIn this paper the basic research problems associated with modelling the basic stealth features for a small navy ship at the concept design stage are introduced. Amongst the major stealth features considered are: the modification of the immersed ship hull form by a rapid change of the ship loading condition, and modification of the ship boundary layer by the hull skin cover. The other stealth features of the ship are not presented...
-
Collagen Type II—Chitosan Interactions as Dependent on Hydroxylation and Acetylation Inferred from Molecular Dynamics Simulations
PublicationChitosan–collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials suitable for cartilage and synovial fluid regeneration. However, many structural features influence...
-
Analysis of Validation and Simplification of Timber-Frame Structure Design Stage with PU-Foam Insulation
PublicationThe transition from experimental studies to the realm of numerical simulations is often necessary for further studies, but very difficult at the same time. This is especially the case for extended seismic analysis and earthquake-resistant design. This paper describes an approach to moving from the experimental testing of an elementary part of a wood-frame building structure to a numerical model, with the use of a commercial engineering...
-
Polyurethanes Crosslinked with Poly(vinyl alcohol) as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine
PublicationNovel, slowly-degradable and hydrophilic materials with proper mechanical properties and surface characteristics are in great demand within the biomedical field. In this paper, the design, synthesis, and characterization of polyurethanes (PUR) crosslinked with poly(vinyl alcohol) (PVA) as a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized by a two-step polymerization performed in a solvent...
-
A significance of multi slip condition for inclined MHD nano-fluid flow with non linear thermal radiations, Dufuor and Sorrot, and chemically reactive bio-convection effect
PublicationThe aim of this research is to discuss the significance of slip conditions for magnetized nanofluid flow with the impact of nonlinear thermal radiations, activation energy, inclined MHD, sorrot and dufour, and gyrotactic micro motile organisms over continuous stretching of a two-dimensional sheet. The governing equations emerge in the form of partial differential equations. Since the resultant governing differential equations...
-
Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations
PublicationChitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon...
-
PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application
PublicationBioactive materials may be applied in tissue regeneration, and an example of such materials are wound dressings, which are used to accelerate skin healing, especially after trauma. Here, we proposed a novel dressing enriched by a bioactive component. The aim of our study was to prepare and characterize poly(vinyl alcohol) films modified with strontium titanate nanoparticles. The physicochemical properties of films were studied,...
-
2D MXene nanocomposites: electrochemical and biomedical applications
PublicationIn recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic...
-
Progress in ATRP-derived materials for biomedical applications
PublicationThe continuing wave of technological breakthroughs and advances is critical for engineering well- defined materials, particularly biomaterials, with tailored microstructure and properties. Over the last few decades, controlled radical polymerization (CRP) has become a very promising option for the synthesis of precise polymeric materials with an unprecedented degree of control over mo lecular architecture. Atom transfer radical...
-
Influence of Ultrasound on the Characteristics of CaP Coatings Generated Via the Micro-arc Oxidation Process in Relation to Biomedical Engineering
PublicationOver the past decade, bone tissue engineering has been at the core of attention because of an increasing number of implant surgeries. The purpose of this study was to obtain coatings on titanium (Ti) implants with improved properties in terms of biomedical applications and to investigate the effect of ultrasound (US) on these properties during the micro-arc oxidation (MAO) process. The influence of various process parameters, such...
-
Highly Dissipative Materials for Damage Protection against Earthquake-Induced Structural Pounding
PublicationIt is a common situation that seismic excitations may lead to collisions between adjacent civil engineering structures. This phenomenon, called earthquake-induced structural pounding, may result in serious damage or even the total collapse of the colliding structures. Filling the gap between two buildings erected close to one another by using visco-elastic materials can be considered to be one of the most effective methods to avoid...
-
Clickable polysaccharides for biomedical applications: A comprehensive review
PublicationRecent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield...
-
Piezoelectric Transducer for Mechanical Assessment of Soft Tissues. Concept, Implementation and Analysis
PublicationThe main goal of this work was following: preparation of a new concept, implementation and analysis of the piezoelectric resonant sensor/actuator for measuring the aging process of human skin. The research work has been carried out in the framework of cooperation between the INP-ENSEEIHT-LAPLACE, Toulouse, France, and at the Gdansk University of Technology, Faculty of Electrical and Control Engineering, Research Group of...
-
Structural investigations of niobium-doped bioactive calcium-phosphate glass-ceramics by means of spectroscopic studies
PublicationSynthetic calcium-phosphate based glasses and glass-ceramics play a crucial role in the development of tissue engineering. These materials have a high biocompatibility with biological analogues, excellent ability to undergo varying degrees of resorbability and due to their non-toxicity and relatively high bioactivity they are commonly used as bone and dental implants. A substantial research effort is devoted to improve synthetic...
-
Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future
PublicationThe ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived...
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
PublicationShape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The...
-
Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA
PublicationThe final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal...
-
THE INFLUENCE OF POLYMER STRIPS IN REDUCTION OF A STEEL GRANDSTAND VIBRATIONS
PublicationGrandstands are types of structures commonly used during sport events or music concerts. Dynamic loads generated by crowd movement may have significant influence on human perception as well as may lead to the destruction of a structure. Lighter and more slender structural steel members are more easily excitable by spectators. If the synchronized movement is tuned with the natural frequency of the affected part of the structure,...
-
A device for measuring heat flux on a rocket skin surface
PublicationA novel method for measuring heat flux on a surface is presented. It is an extensive upgrade of currently known heat flux sensors used mostly in civil engineering. As the thermal environment of launchers, especially sounding rocket can have an enormous negative effect on payload, careful considerations have to be taken in the process of preparing insulation. Usually, thermal data provided by the launch vehicle manufacturer is limited...
-
Smart Materials in Architecture: Useful Tools with Practical Applications or Fascinating Inventions for Experimental Design?
PublicationFor at least several decades smart or so-called intelligent materials, being the result of great advancements in material engineering, appear in architecture in different applications. Most of them are called "smart" because of their inherent properties: a real-time response to environmental stimuli. There are also those considered to be "smart" due to smart design: their original structure or the composition of their materials...
-
Spectroscopic studies of Nb-doped tricalcium phosphate glass-ceramics prepared by sol-gel method
PublicationCalcium-phosphate based glasses and glass-ceramics play a crucial role in the tissue engineering development. Apart from their high biocompatibility and excellent ability to undergo varying degrees of resorbability1, they exhibit relatively high bioactivity and due to that they are commonly used as bone and dental implants. A substantial research effort is devoted to improve calcium-phosphate materials physico-chemical properties...