Filters
total: 92
filtered: 80
-
Catalog
Chosen catalog filters
Search results for: oxide layers
-
Properties of Composite Oxide Layers on The Ti13Nb13Zr Alloy
PublicationThe development of composite oxide layers on the Ti13Nb13Zr alloy, their structure and properties have been demonstrated. Two subsequent methods were applied to prepare the composite layers. During the first stage gas oxidation produced a solid oxide layer, and subsequently oxide nanotubes were produced by using an electrochemical method. Scanning electron microscopy (SEM), chemical analysis, energy dispersive X-ray spectroscopy...
-
Oxide Layers Fabricated by Spray Pyrolysis on Metallic Surfaces
Publicationw pracy przedstawiono wyniki badań nad opracowaniem optymalnych warunków przygotowania warstwy stabilizowanego itrem cyrkonu jako prekursora na stali 316L jako podłoża za pomocą pirolizy aerozolowej.
-
Preparation of nano-tubular oxide layers on titanium alloy Ti13Nb13Zr
PublicationThe article presents results of oxidation tests and corrosion investigations of titanium alloy Ti13Nb13Zr preformed at different conditions. The oxide layers have been formed using electrochemical method in 2M H3PO4 + 0,3% HF solution for 30 min. and 1h at 20V constant voltage. The corrosion tests heve been made with poteniodynamic method in Ringer's solution at pH ranged 3 and 7. It has been shown that the nano-oxide films, which...
-
Self-Organized Nanotubular Oxide Layers on Ti and Ti Alloys
PublicationTo improve bioactivity of titanium and titanium, the implant surface modification by formation of self-organized TiO2 nanotube arrays with electrochemical techniques is presented. The influence of electrolyte composition and deposition parameters during anodization is characterized. The enhancement of phosphates deposition by titanium nanotubular structure is discussed. The calcium phosphate ceramics is shown to be uniformly deposited...
-
Nanotubular oxide layers and hydroxyapatite coatings on ‘Ti–13Zr–13Nb’ alloy
PublicationThe presented research was aimed to determine the mechanical properties of the nanotubular oxide layer covered with hydroxyapatite coating. The Ti–13Zr–13Nb alloy was oxidised in 1M phosphoric acid with an addition of 0?5% HF for HF solution at 20 V voltage. The electrochemically assisted deposition of hydroxyapatite was performed at cyclic polarisation in NH4H2PO4 and CaCl2 solution at 80uC. The mechanical properties were determined...
-
Nanotubular Ti Oxide Layers for Enhancement of Bone-Implant Bonding and Bioactivity
PublicationAbstrakt artykułu pt. ''Nanotubular Ti Oxide Layers for Enhancement of Bone-Implant Bonding and Bioactivity''. The paper describes techniques to improve the bioactivity of titanium and ehnahnce the bone-implant bonding ability by the electrochemical anodization to fabricate titania nanotubular oxide layer.
-
Nanotubular oxide layers and hydroxyapatite coatings on porous titanium alloy Ti13Nb13Zr
PublicationThe surface condition of an implant has a significant impact on response occurring at the implant-biosystem border. The knowledge of physical-chemical and biological processes allows for targeted modification of biomaterials to induce a specified response of a tissue. The present research was aimed at development of technology composing of obtaining the nanotube oxide layers on a porous titanium alloy Ti13Nb13Zr, followed by the...
-
Nanotubular Titanium Oxide Layers for Enhancement of Bone-Implant Bonding and Bioactivity
PublicationThe present paper describes the techniques to improve the bioactivity of titanium and enhance the bone-implant bonding ability by the electrochemical anodization to fabricate titania nanotube arrays (TiO2).
-
Oxide layers fabricated by spray pyrolysis for resistance random access memory
PublicationW pracy zbadano przydatność pirolizy aerozolowej do wytwarzania warstw dla memrystorów.
-
THE ROLE OF THIN FUNCTIONAL LAYERS IN SOLID OXIDE FUEL CELLS
PublicationWidespread commercialization of solid oxide fuel cells requires lowering its cost. It is generally accepted that to lower the cost of solid oxide fuel cells it is necessary to use metal alloys as interconnectors and, consequently, lower its operating temperature to slow down interconnectors degradation. As a result the area specific resistance of the cathodes should be lowered to sustain the performance of the cells. In order to...
-
Interface layers between electrolyte and cathodes for solid oxide fuel cells
PublicationW pracy przebadano możliwość zastosowania warstwy CGO ((CeO2)0.8 (Gd2O3)0.1) w tlenkowych ogniwach paliwowych. Do wytworzenia warstwy użyto pirolizy aerozolowej.
-
Oxide layers fabricated by spray pyrolysis on metallic surfaces = Warstwy tlenkowe wytworzone metoda pirolizy aerozolowej na podłożach metalicznych
PublicationW pracy przebadane zostały możliwości zastosowania metody pirolizy aerozolowej do wytwarzania warstw z tlenku cyrkonu stabilizowanego itrem na podłożu ze stali nierdzewnej 316L.
-
Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells
PublicationGadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion of elements. The parameters of the fabrication process are linked to the measured area specific resistances of the symmetrical cells and the efficiency...
-
Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy
PublicationTitania-based films on selective laser melted Ti13Zr13Nb have been formed by micro-arc oxidation (MAO) at different process parameters (voltage, current, processing time) in order to evaluate the impact of MAO process parameters in calcium and phosphate (Ca + P) containing electrolyte on surface characteristic, early-stage bioactivity, nanomechanical properties, and adhesion between the oxide coatings and substrate. The surface...
-
Investigation of catalytic layers on anode for solid oxide fuel cells operating with synthetic biogas
PublicationIn this paper solid oxide fuel cells operating with dry synthetic biogas have been examined. In order to increase their stability the layers of CuO-CeO2, Cu1.3Mn1.7O4 and Y0.08Sr0.92Ti0.8Fe0.2O3 -δ have been deposited on the Ni-YSZ anode site. These layers should catalyze the internal biogas reforming and prevent the carbon deposition on the anode site. It has been found that CuO-CeO2 and Cu1.3Mn1.7O4 catalysts led to an increase...
-
Investigation of functional layers of solid oxide fuel cell anodes for synthetic biogas reforming
PublicationSolid oxide fuel cells (SOFCs) are one of the most promising energy conversion devices due to their high efficiency, low pollution and fuel flexibility. Unfortunately, when hydrocarbons are used as a fuel, for example in the form of a biogas, solid carbon can deposit on the anode surface. This process leads to the degradation of the fuel cell performance. A possible solution to this problem is to apply an additional catalytic material,...
-
Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers
PublicationIntermediate temperature solid oxide fuel cells oxygen electrodes are modified by active interfacial layers. Spray pyrolysis is used to produce thin (≈500 nm) layers of mixed ionic and electronic conductors: Sm0.5Sr0.5CoO3−δ (SSC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), and Pr6O11 (PrOx) on the electrode–electrolyte interface. The influence of the annealing temperature on the electrode polarization (area specific...
-
Processing of Ce0.8Gd0.2O2-δ barrier layers for solid oxide cells: The effect of preparation method and thickness on the interdiffusion and electrochemical performance
PublicationCe0.8Gd0.2O1.9 (CGO) barrier layers are required to mitigate the chemical reactions between Sr-containing oxygen electrode materials and Zr-based oxygen ion conductors in high-temperature solid oxide cells. Barrier layers produced by different methods were studied in this work. As a reference, a cell with no barrier layer was measured. The application of the powder-processed barrier layers, considerably increases the performance....
-
Investigation of thin perovskite layers between cathode and doped ceria used as buffer layer in solid oxide fuel cells
PublicationIn this paper, thin perovskite layers between cathode material of solid oxide fuel cells and gadolinia-doped ceria buffer layer are investigated. Thin layers made of LaNi0.6Fe0.4O3-δ (LNF), La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), or SrTi0.65Fe0.35O3-δ (STF) were symmetrically deposited by spin coating method from metallo-organic polymer precursors on a Ce0.8Gd0.2O2-δ (CGO) substrate. Porous and about 40-μm-thick LNF cathodes were deposited...
-
Photoelectrochemically Active N‐Adsorbing Ultrathin TiO2 Layers for Water‐Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environment
PublicationHighly performing photocatalytic surfaces are nowadays highly desirable in energy fields, mainly due to their applicability as photo water‐splitting electrodes. One of the current challenges in this field is the production of highly controllable and efficient photoactive surfaces on many substrates. Atomic layer deposition has allowed the deposition of photoactive TiO2 layers over wide range of materials and surfaces. However,...
-
Formation of High Corrosion Resistant Nanotubular Layers on TitaniumAlloy Ti13Nb13Zr
PublicationThis paper presents results of oxidation tests and corrosion investigations of titanium alloy Ti13Nb13Zr performed at different conditions. The oxide layers have been formed by electrochemical method in 2M H3PO4 + 0.3% HF solution for 30 min. and 1 h at 20 V constantvoltage. The corrosion tests have been made by potentiodynamic method in Ringer`s solution at pH ranged between 3 and 7. It has been shown that the nano-oxide films,...
-
Formation of High Corrosion Resistant Nanotubular Layers on TitaniumAlloy Ti13Nb13Zr
PublicationThis paper presents results of oxidation tests and corrosion investigations of titanium alloy Ti13Nb13Zr performed at different conditions. The oxide layers have been formed by electrochemical method in 2M H3PO4 + 0.3% HF solution for 30 min. and 1 h at 20 V constantvoltage. The corrosion tests have been made by potentiodynamic method in Ringer`s solution at pH ranged between 3 and 7. It has been shown that the nano-oxide films,...
-
Improved performance of LaNi0.6Fe0.4O3 solid oxide fuel cell cathode by application of a thin interface cathode functional layer
PublicationIn this work, novel functional layers were prepared by a low temperature spray pyrolysis method on the oxygen side of the solid oxide cells. Thin layers of Ce0.8Gd0.2O2 and LaNi0.6Fe0.4O3 are prepared between the electrolyte and the porous oxygen electrode. Additionally the influence of the sprayed ceria barrier layer on the zirconia based electrolyte with the new layers is evaluated. Impedance spectroscopy results show improvement...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
The protective properties of graphene oxide coatings functionalized with phosphorus atoms.
PublicationRecently, electrophoretically deposited graphene oxide coatings are commonly applied as an anti-corrosion layer. However, improper adjustment of electrophoretic deposition (EPD) parameters as well as the hydrophilic nature of graphene oxide contribute to the formation of defects in the coatings and the increase in the wetting properties, respectively, and thus lead to a reduction of protective properties. The growth of wetting...
-
Evaluation of structural and electrical properties of multicomponent spinel oxide thin films deposited via spray pyrolysis technique
PublicationThis work reports the preparation of (Mn,Co,Fe,Ni,Cr)3O4 high-entropy spinel oxide in the form of a ~ 500 nm thin film utilising a facile spray pyrolysis technique. The structural and electrical properties of the layers were characterised after exposure to temperatures in the range of 400–900 ◦C. The as-deposited layers were amorphous, and crystallised upon heat treatment at 500 ◦C. Microstructural analyses proved a homogeneous...
-
Electrolytic deposition of reactive element thin films on Crofer 22 APU and evaluation of the resulting high-temperature corrosion protection properties at 700 °C–900 °C
PublicationThis article presents electrolytic deposition of thin Rare Earth (RE) coatings on Crofer 22 APU stainless steel substrates for high temperature applications, such as interconnects in solid oxide cell stacks. The deposition of coatings based on yttrium-, gadolinium-, lanthanum-, and cerium nitrates is discussed. The high temperature corrosion properties of surface-modified steels were examined using thermogravimetry and electrical...
-
Novel method for metal-oxide glass composite fabrication for use in thermoelectric devices
PublicationA novel method for thermoelectric materials fabrication using a reduction of oxide precursors in hydrogen was reported. On the example of Bi-Sb, Bi-Sb-Te and Te-Ag-Ge-Sb compounds it was shown that this simple and easy method is suitable for fabrication of two-, three- and even multicomponent thermoelectric materials. It allows controlling a composition, microstructure and even type a of electrical charge carriers. As a result...
-
Oxidation and hydrogen behavior in Zr-2Mn alloy
PublicationThe purpose of the present research was to determine the oxidation and hydrogenation behavior in the new Zr-2Mn alloy. The oxidation of alloy was performed at temperatures between 350°C and 900°C for 30 minutes. The hydrogen charging was made for 72 h at a current density 80 mA/cm2. The charged samples were heat treated at 400°C for 4 h to obtain a uniform hydrogen profile content across the sample. The oxidation resulted in an...
-
CuMn1.7Fe0.3O4 – RE2O3 (RE=Y, Gd) bilayers as protective interconnect coatings for Solid Oxide Cells
PublicationEfficient replacement of materials based on critical elements such as cobalt is one of the greatest challenges facing the field of solid oxide cells. New generation materials, free of cobalt show potential to replace conventional materials. However, these materials are characterized by poor ability to block chromium diffusion. This article described the study of CuMn1.7Fe0.3O4 (CMFO) spinel combined with single metal oxide (Y2O3...
-
Spectral reflectance modeling of ZnO layers made with Atomic Layer Deposition for application in optical fiber Fabry-Perot interferometric sensors
PublicationSuitability of zinc oxide (ZnO) layers grown using Atomic Layer Deposition for operation in optical-fiber extrinsic Fabry-Perot sensors is investigated using a numerical model. Reflectance spectra obtained using the developed model indicate that the application of these layers in optical-fiber extrinsic Fabry-Perot sensors is difficult as it may require a source whose spectrum width is about 300 nm. A series of ZnO layers grown...
-
Badanie właściwości czujników wilgotności na bazie nanocząstek tlenku cynku
PublicationW celu pomiaru wilgotności szeroko stosowane są czujniki elektryczne. Warstwą czynną, zmieniającą swoje właściwości pod wpływem pary wodnej, stanowią najczęściej materiały ceramiczne lub polimerowe. Tlenek cynku jest jednym z materiałów ceramicznych będących dobrym kandydatem do zastosowania go jako warstwy czynną w czujnikach wilgotności. W tej pracy przedstawiono wyniki badań właściwości struktur czujnikowych z warstwą tlenku...
-
The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants
PublicationMolybdenum oxide layers were formed by anodization of the Mo metallic foil in a water/ethylene glycol-based electrolyte containing fluoride ions. The as-prepared, amorphous samples were annealed in air at different temperatures in a range from 100 �C to 700 �C. The crystal phase and morphology of anodized and annealed MoO3 layers were investigated using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The...
-
Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants
PublicationSurface modification is used to extend the life of implants. To increase the corrosion resistance and improve the biocompatibility of metal implant materials, oxidation of the Ti-13Nb- 13Zr titanium alloy was used. The samples used for the research had the shape of a helix with a metric thread, with their geometry imitating a dental implant. The oxide layer was produced by a standard electrochemical method in an environment of...
-
Thermoelectric properties of bismuth-antimony-telluride alloys obtained by reduction of oxide reagents
PublicationThe BieSbeTe alloys with different Bi/Sb/Te ratio were fabricated by an innovative method. For that purpose the oxide reagents were melted at high temperature, then quenched to form pellets, milled to a powder and finally reduced in hydrogen at various temperatures. Complex structures consisting of connected thin layers forming a continuous path between nano- and micrometer size grains have been obtained. The electrical conductivity,...
-
CGO as a barrier layer between LSCF electrodes and YSZ electrolyte fabricated by spray pyrolysis for solid oxide fuel cells
PublicationPerovskite La0.6Sr0.4Co0.2Fe0.8O3 − δ (LSCF) is often used as a cathode material for solid oxide fuel cells (SOFC) due to high mixed ionic and electronic conductivity and good catalytic activity. Unfortunately, sintering of the LSCF cathode together with the yttria stabilized zirconia (YSZ) electrolyte, leads to formation of the La2Zr2O7 and SrZrO3 phases in the interface. These phases increase the resistance of the cell. To avoid...
-
Signature of Oxide-Ion Conduction in Alkaline-Earth-Metal-Doped Y3GaO6
PublicationWe have studied alkaline-earth-metal-doped Y3GaO6 as a new family of oxide-ion conductor. Solid solutions of Y3GaO6 and 2% −Ca2+-, −Sr2+-, and −Ba2+-doped Y3GaO6, i.e., Y(3−0.06)M0.06GaO6−δ (M = Ca2+, Sr2+, and Ba2+), were prepared via a conventional solid-state reaction route. X-ray Rietveld refined diffractograms of all the compositions showed the formation of an orthorhombic structure having the Cmc21 space group. Scanning electron...
-
Influence of titanium layer on counter electrode on electrical parameters of DSSC
PublicationIn this paper the influence of the Ti layer thickness at counter-electrode on electrical parameters of DSSCs was examined. The transparent conductive oxide – less (TCO-less) counter electrodes (CE) with titanium layers and platinum as catalyst on Bk7 glass were prepared. Thin metallic films were deposited by means of magnetron sputtering (titanium) and Pulsed Laser Deposition (platinum). The counter electrode with Pt layer on Fluorine...
-
Warstwy funkcjonalne tlenkowych ogniw paliwowych
PublicationIn this paper, results describing current research on solid oxide fuel cells conducted at Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics are presented. The results are related to three kinds of functional layers: a thin cathode layer between the porous cathode layer and the electrolyte to improve the cathode performance, a buffer layer between the electrolyte and the cathode to slow...
-
Effects of electrophoretic deposition times and nanotubular oxide surfaces on properties of the nanohydroxyapatite/nanocopper coating on the Ti13Zr13Nb alloy
PublicationLoad-bearing implants are developed with a particular emphasis placed on an application of ceramic hydroxyapatite coatings in order, to enhance the bioactivity of titanium implants and to shorten the healing time. Therefore, thin, fully crystalline coatings that are, highly adhesive, hydrophilic and demonstrating antibacterial properties are ly looked for. The aim of this research was to develop and characterize the properties...
-
Photoelectric properties of a novel MEH-PPV/F16ZnPc heterojunction
PublicationPhotoelectric properties of a novel poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylen)] (MEH-PPV)/perfluorozincphthalocyanine (F16ZnPc) planar heterojunction provided with BCP and MoO3 buffer layers sandwiched between indium tin oxide (ITO) and Ag are shown. Efficient photogeneration of charge carriers at this junction is observed. Effect of bathocuproine (BCP) and MoO3 buffer layers on the performance of cells is analysed....
-
Crystalline Silicon (c-Si)-Based Tunnel Oxide Passivated Contact (TOPCon) Solar Cells: A Review
PublicationContact selectivity is a key parameter for enhancing and improving the power conversion efficiency (PCE) of crystalline silicon (c-Si)-based solar cells. Carrier selective contacts (CSC) are the key technology which has the potential to achieve a higher PCE for c-Si-based solar cells closer to their theoretical efficiency limit. A recent and state-of-the-art approach in this domain is the tunnel oxide passivated contact (TOPCon)...
-
MnCo2O4 deposited by spray pyrolysis as a protective layer for stainless steel interconects
PublicationStainless steel interconnects working in Solid Oxide Fuel Cells stacks are exposed to high temperature resulting in their corrosion. Protective layers for the hydrogen and oxygen sides are necessary to protect the interconnect material, prolongate the stack lifetime and maintain the output power. In this paper MnCo2O4 protective layer for the oxygen side of the interconnect is deposited by spray pyrolysis and is examined.
-
Effect of double thermal and electrochemical oxidation on titanium alloys for medical applications
PublicationThe research focuses on the development and characterization of innovative thin hybrid oxide coatings obtained in subsequent processes of thermal (TO) and electrochemical (EO) oxidation. Four different surface modifications were investigated and the microstructure was determined, the mechanical, chemical and biological properties of the Ti-13Nb-13Zr alloy were assessed using scanning electron microscopy, X-ray dispersion analysis,...
-
X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures
PublicationThe investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube...
-
Facilitated water transport in composite reduced graphene oxide pervaporation membranes for ethanol upgrading
PublicationHigh purity ethanol is one of the most sought-after renewable energy sources. However, standard production methods yield ethanol of insufficient quality. Membrane processes such as pervaporation are recognized as a viable method for upgrading ethanol. Their performance and selectivity depend solely on membrane employed. Hydrophilic polyvinyl alcohol (PVA) membranes are used industrially for this purpose, but there is a trade-off...
-
The Effect of Sodium Tetrafluoroborate on the Properties of Conversion Coatings Formed on the AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation
PublicationMagnesium and its alloys are widely used in many areas because of their light weight, excellent dimensional stability, and high strength-to-weight ratio. However, the material exhibits poor wear and corrosion resistance, which limits its use. Plasma electrolytic oxidation (PEO) is an effective surface modification method for producing ceramic oxide layers on Mg and their alloys. The influence of the additions of sodium tetrafluoroborate...
-
Ceria Based Protective Coatings for Steel Interconnects Prepared by Spray Pyrolysis
PublicationStainless steels can be used in solid oxide fuel/electrolysis stacks as interconnects. For successful long term operation they require protective coatings, that lower the corrosion rate and block chemical reactions between the interconnect and adjacent layers of the oxygen or the hydrogen electrode. One of the promising coating materials for the hydrogen side is ceria. Using standard sintering techniques, ceria sinters at around...
-
Nanolayers in Fiber-Optic Biosensing
PublicationIn this chapter, fiber-optic sensors based on nanolayers or thin films and their ability to perform biophotonic measurements is presented. In the last decade, fiber-optic sensors have gained popularity as biosensing devices. This has been made possible because of the design and the integration of new materials in fiber-optic technology. Nanolayers and thin films made from various materials such as nanodiamond (NCD), boron-doped...
-
Corrosion Study of Ceria Protective Layer Deposited by Spray Pyrolysis on Steel Interconnects
PublicationSingle fuel cells and electrolysis cells are assembled into stacks using interconnects in order to increase power and gas production capacity. The most common choice for the interconnect material is stainless steel. It has good electrical and mechanical properties and is also cost effective. One of the problems when using steel is the formation of a thermally grown oxide scale during use which has a lower electrical conductivity...