Filters
total: 10604
displaying 1000 best results Help
Search results for: POLYETHYLENE-BASED COMPOSITES
-
Copper Slag as a Potential Waste Filler for Polyethylene-Based Composites Manufacturing
PublicationThe present study aimed to analyze the application of waste material from copper production– copper slag (ŻŻL) as filler for composites based on the high-density polyethylene (HDPE). Copper slag filler was introduced in the amounts of 1–20 wt%, and its influence on the appearance (color analysis), chemical structure (Fourier-transform infrared (FTIR) spectroscopy), microstructure (optical microscopy), as well as static (tensile...
-
Comparative Analysis of the Coffee and Cocoa Industry By-Products on the Performance of Polyethylene-Based Composites
PublicationThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...
-
Comparative Analysis of the Cofee and Cocoa Industry By‑Products on the Performance of Polyethylene‑Based Composites
PublicationThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...
-
Mechanical, Thermal and Rheological Properties of Polyethylene-Based Composites Filled with Micrometric Aluminum Powder
PublicationInvestigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry),...
-
INSIGHTS INTO THE PROCESSING, STRUCTURE, AND MECHANICAL PERFORMANCE OF POLYETHYLENE/GYPSUM COMPOSITES
PublicationPolymer composites are used in all branches of industry, with numerous applications. Despite the many years of modifying commodity polymers, using novel fillers allows the range of their applicability to be extended. The impact of new types of fillers on the polymer matrix is not always predictable and requires further studies. The presented study analyzed the application of gypsum as a filler for composites based on high-density...
-
Weather aging effects on modified asphalt with rubber-polyethylene composites
Publication -
Coffee Silverskin as a Multifunctional Waste Filler for High-Density Polyethylene Green Composites
PublicationThis work aims to describe the coffee silverskin effect as a lignocellulosic waste filler for high-density polyethylene (HDPE) composites development. The main task was to determine various modification effects resulting from the complex chemical composition of coffee silverskin containing compounds with potential antioxidative properties, including caffeine, polyphenols, tannins, or melanoidins. The processing, thermal, physicochemical,...
-
Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran
PublicationApplication of lignocellulosic fillers in the manufacturing of wood polymer composites (WPCs) is a very popular trend of research, however it is still rarely observed in the case of rotational molding. The present study aimed to analyze the impact of wheat bran content (from 2.5 wt.% to 20 wt.%) on the performance of rotationally-molded composites based on a linear low-density polyethylene (LLDPE) matrix. Microscopic structure...
-
Biobased Polyethylene Hybrid Composites with Natural Fiber: Mechanical, Thermal Properties, and Micromechanics
Publication -
High-density Polyethylene - Expanded Perlite Composites: Structural Oriented Analysis of Mechanical and Thermomechanical Properties
PublicationAs part of this work, research was carried out on the effect of the addition of expanded perlite (PR) on the mechanical and thermomechanical properties of high-density polyethylene (PE) composites. Composites containing from 1 to 10 wt% of the inorganic filler were produced. Polyethylene-based composites manufactured by twin-screw extrusion and formed in the compression molding process were subjected to mechanical, thermomechanical,...
-
High-density polyethylene/EPDM rubber blend composites of boron compounds for neutron shielding application
PublicationNovel materials with neutron shielding property were fabricated by incorporating boron compounds into highdensity polyethylene (HDPE)/Ethylene propylene diene monomer rubber (EPDM) blends. A detailed investigation on the morphological, thermal, mechanical, and neutron attenuation properties of suitable proportion of HDPE/EPDM blend with boric acid (BA), boron carbide (BC), and nano boron carbide (NBC) were performed. Morphology...
-
Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability
Publication -
Enhancement of Thermal Stability, Conductivity and Smoke Suppression of Polyethylene Composites with Exfoliated MoS2 Functionalized with Magnetite
Publication -
A case study on the rotomolding behavior of black tea waste and bio-based high-density polyethylene composites: Do active compounds in the filler degrade during processing?
PublicationThis study verified the possibility of using waste material from the food industry (black tea) as functional filler of rotomolded biobased high-density polyethylene-based composites. As part of the experimental work, the influence of the materials preparation, i.e., dry blending versus twin-screw extrusion, on the effectiveness of the stabilizing antioxidant effect of the black tea was analyzed. The aim of the work was to verify...
-
Ground lemon and stevia leaves as renewable functional fillers with antioxidant activity for high-density polyethylene composites
PublicationThe development of new sustainable material solutions in the processing of thermoplastic polymers concerns both the application of biopolymers and the use of valorized plant derivatives as fillers and modifiers of petrochemical polymers. Herein, the possibility of using unprocessed raw parts of two commonly used in the food industry leaves, i.e., lemon (LL) and stevia (ST), as active and functional fillers for high-density polyethylene...
-
DOPO-Functionalized Molybdenum Disulfide and its Impact on the Thermal Properties of Polyethylene and Poly(Lactic Acid) Composites
Publication -
Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibres isolated from waste plant biomass such as hemp
Publication -
Investigation of Wood Flour Size, Aspect Ratios, and Injection Molding Temperature on Mechanical Properties of Wood Flour/Polyethylene Composites
PublicationIn the present research, wood flour reinforced polyethylene polymer composites with a coupling agent were prepared by injection molding. The effects of wood flour size, aspect ratios, and mold injection temperature on the composites’ mechanical properties were investigated. For the preparation of the polymer composites, five different formulations were created. The mechanical properties including tensile strength and the modulus,...
-
Influence of Giant Reed (Arundo Donax L.) Culms Processing Procedure on Physicochemical, Rheological, and Thermomechanical Properties of Polyethylene Composites
PublicationGiant reed (Arundo donax L.) is a plant species with a high growth rate and low requirements, which makes it particularly interesting for the production of different bioproducts, including natural fibers. This work assesses the use of fibers obtained from reed culms as reinforcement for a high-density polyethylene (HDPE) matrix. Two different lignocellulosic materials were used: i) shredded culms and ii) fibers obtained by culms...
-
Properties of Clinoptilolite Based Autoclaved Composites
Publication -
How the Dimensions of Plant Filler Particles Affect the Oxidation-Resistant Characteristics of Polyethylene-Based Composite Materials
PublicationThis study analyzed the possibility of using plant-originated waste materials (black and green tea dust) as functional polyethylene fillers. The dependence between the size of the filler particles and their antioxidant potential is discussed. Six fractions were selected: below 50 µm, 50–100 µm, 100–200 µm, 200–400 µm, 400–630 µm and 630–800 µm. Significant differences between the effect of particle size and the antioxidant properties...
-
Natural composites based on polysaccharide derivatives: preparation and physicochemical properties
Publication -
Thermal and Electrical Characterization of the Carbon Nanofibers Based Cement Composites
Publication -
Bio-Based Polyurethane Composites and Hybrid Composites Containing a New Type of Bio-Polyol and Addition of Natural and Synthetic Fibers
PublicationThis article describes how new bio-based polyol during the liquefaction process can be obtained. Selected polyol was tested in the production of polyurethane resins. Moreover, this research describes the process of manufacturing polyurethane materials and the impact of two different types of fibers—synthetic and natural (glass and sisal fibers)—on the properties of composites. The best properties were achieved at a reaction temperature...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublicationBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Mechanical Properties of Bio-Composites Based on Epoxy Resin and Nanocellulose Fibres
PublicationThe aim of our research was to investigate the effect of a small nanocellulose (NC) addition on an improvement of the mechanical properties of epoxy composites. A procedure of chemical extraction from pressed lignin was used to obtain nanocellulose fibers. The presence of nanoparticles in the cellulose pulp was confirmed by FTIR/ATR spectra as well as measurement of nanocellulose particle size using a Zetasizer analyzer. Epoxy...
-
Novel Approaches of Using of Spirulina Platensis in Natural Rubber Based Composites
PublicationThe aim of this work was to investigate the influence of Spirulina (Spirulina platensis) as a natural filler on the curing characterization, morphology and mechanical, thermomechanical and thermal properties of natural rubber (NR) based composites. Spirulina was introduced into NR mixture in amount of 0 phr, 10 phr and 30 phr. The vulcanization process was carried out at the determined process condition by using hydraulic press...
-
Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
Publication -
Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes
Publication -
3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid
Publication -
Mechanical properties cement based composites modified with nano-Fe3O4/SiO2
Publication -
Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites
PublicationThis work is mainly focused on study of thermal and thermomechanical properties of obtained bio-based polyurethane (coded as bio-PU) composites via using different types of bio-components (bio-glycol, modified soybean oil and sisal fiber) in the procedure. The chemical structure, morphology and mechanical properties were also investigated and described in this manuscript in order to know more perfect characterization of produced...
-
MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review
PublicationMXenes, a novel large family of 2D transition metal carbides, carbonitrides and nitrides are currently a “hot topic” in science due to their several fascinating physical and chemical properties. It follows from a rich diversity of their elemental compositions and chemical functionalities. MXenes can form composites with many substances, including polymers or metal oxides, which allows to effective “tune” MXene characteristics to...
-
Synthesis and thermal characterization of luminescent hybrid composites based on bisphenol A diacrylate and NVP
Publication -
Response of inflammatory cells to biodegradable ultra-fine grained Mg-based composites
Publication -
Properties of ultrafine-grained Mg-based composites modified by addition of silver and hydroxyapatite
Publication -
MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review
Publication -
The effect of nanomaterials on thermal resistance of cement-based composites exposed to elevated temperature
Publication -
Segmented bio-based polyurethane composites containing powdered cellulose obtained from novel bio-based diisocyanate mixtures
PublicationA considerable number of research works focus on the positive influence of cellulose on the properties of polymer-based composites and their wide range of application possibilities. The present work is focused on the synthesis of novel bio-based polyurethane (bio-PU) composites filled with powdered cellulose (microcellulose, MC) in an amount of 5 wt.%. Bio-PU composites were synthesized via a non-solvent prepolymer method. First,...
-
Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Composites
PublicationAramid (AF), glass (GF), carbon (CF), basalt (BF), and flax (FF) fibers in the form of fabrics were used to produce the composites by hand-lay up method. The use of fabrics of similar grammage for composites’ manufacturing allowed for a comprehensive comparison of the properties of the final products. The most important task was to prepare a complex setup of mechanical and thermomechanical properties, supplemented by fire behavior...
-
Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose
PublicationThe aim of this work was to obtain bio-based polyurethane composites using biocomponents such as, bio-glycol, modified natural oil-based polyol, and microcrystalline cellulose (MCC). The prepolymer method was used to prepare the bio-based polyurethane matrix. Prepolymer synthesised from 4,4’-diphenylmethane diisocyanate (MDI) and a polyol mixture containing 75% wt. commercial polyether and 25% wt. hydroxylated soybean oils (H3)...
-
Reactive extrusion of bio-based polymer blends and composites – Current trends and future developments
PublicationReactive extrusion is a cost-effective and environmentally-friendly method to produce new materials with enhanced performance properties. At present, reactive extrusion allows in-situ polymerization, modification/functionalization of polymers or chemical bonding of two (or more) immiscible phases, which can be carried out on commonly used extrusion lines. Although reactive extrusion has been known for many years, its application...
-
Recycling of Waste Rubber by the Manufacturing of Foamed Polyurethane-Based Composites—Current State and Perspectives
PublicationWorn car tires are disruptive waste, and the issue of their management is crucial for the natural environment. In many countries, the primary method of end-of-life tires utilization is energy recovery. However, more effective and beneficial for the environment is material recycling. Using them for the production of polymer-rubber composites seems to be an auspicious direction of research. Incorporation of ground tire rubber into...
-
Morphology of bio-based polyurethane composites filled by mer-cerized or silanized natural fibres
PublicationBio-composites are materials which possess unique properties and undergo biodegra-dation under specific conditions. Bio-composites belong to the group of materials produced with the use of renewable raw materials. They contain reinforcement, mainly in the form of natural fiber, which has high stiffness and resistance; filler powders are less frequently used. Significant features of natural fibers are elongation, density, thermal...
-
Microstructure and electrical properties of SrTi0.98Nb0.02O3-δ-based composites applied as porous layers for SOFCs
PublicationPrzebadano właściwości elektryczne oraz strukturalne kompozytów Sr(Ti,Nb)O3-YSZ i Sr(Ti,Nb)O3-CeO2 naniesionych w postaci warstw porowatych na podłoża YSZ
-
Evaluation of antimicrobial activity of porous composites based on chitosan/poly (vinyl alcohol)
Open Research DataThe dataset contains the results of microbiological tests of composite porous materials whose activity was assessed for their ability to reduce the number of Escherichia coli and Staphylococcus aureus strain, representing the Gram (-) and Gram (+) bacteria, respectively.
-
Encapsulation of Amikacin into Microparticles Based on Low-Molecular-Weight Poly(lactic acid) and Poly(lactic acid-co-polyethylene glycol)
PublicationThe aim of this study was to fabricate novel microparticles (MPs) for efficient and long-term delivery of amikacin (AMI). The emulsification method proposed for encapsulating AMI employed low-molecular-weight poly(lactic acid) (PLA) and poly(lactic acid-co-polyethylene glycol) (PLA−PEG), both supplemented with poly(vinyl alcohol) (PVA). The diameters of the particles obtained were determined as less than 30 μm. Based on an in-vitro...
-
Chemical structure, thermal and mechanical characterization of bio-based polyurethane composites filled with microcrystalline cellulose
PublicationOver the past several decades, the interest in replacing the synthetic components used in the production of polymers and composites with their natural counteparts has been growing. Biocomposites belong to the group of materials produced with the use of renewable raw materials. There has been a recent surge of interest in the industrial applications of composites containing natural fibres reinforced with biopolymers. Biopolymers...
-
Modulation of dielectric properties in low-loss polypropylene-based composites at GHz frequencies: theory and experiment
PublicationPolymer composites with high dielectric constant and low loss tangent are highly regarded as substrates for modern high-speed electronics. In this work, we analyze the high-frequency dielectric properties of two types of composites based on polypropylene infused with high-dielectric-constant microparticles. Two types of fillers are used: commercial ceramics or titanium oxide ( TiO2) with different concentrations. The key observation...
-
Microcracking monitoring and damage detection of graphene nanoplatelets-cement composites based on acoustic emission technology
PublicationThis study aims to identify the micro-cracking pattern and structural applications of cement composites replaced with 0 wt%, 0.04 wt%, and 0.08 wt% contents of graphene nanoplatelets (GNPs) over cement weight through acoustic emission (AE) monitoring under mechanical degradation. The ultraviolet-visible spectroscopy (UV–vis) results showed that at 60 min sonication period, GNP-4 showed maximum absorbance rate of 16.15% compared...