Search results for: metody uczenia sieci neuronowych
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
WYKORZYSTANIE SIECI NEURONOWYCH I METODY WEKTORÓW NOŚNYCH SVM W PROCESIE ROZPOZNAWANIA AKTYWNOŚCI RUCHOWEJ PACJENTÓW DOTKNIĘTYCH CHOROBĄ PARKINSONA
PublicationChoroba Parkinsona (ang. PD - Parkinson Disease) zaliczana jest do grupy chorób neurodegeneracyjnych. Jest to powoli postępująca choroba zwyrodnieniowa ośrodkowego układu nerwowego. Jej powstawanie związane jest z zaburzeniem produkcji dopaminy przez komórki nerwowe mózgu. Choroba manifestuje się zaburzeniami ruchowymi. Przyczyna występowania tego typu zaburzeń nie została do końca wyjaśniona. Leczenie osób dotkniętych PD oparte...
-
Piotr Szczuko dr hab. inż.
PeoplePiotr Szczuko received his M.Sc. degree in 2002. His thesis was dedicated to examination of correlation phenomena between perception of sound and vision for surround sound and digital image. He finished Ph.D. studies in 2007 and one year later completed a dissertation "Application of Fuzzy Rules in Computer Character Animation" that received award of Prime Minister of Poland. His interests include: processing of audio and video, computer...
-
Comparative study of learning methods for artificial network
PublicationW artykule przedstawiono wyniki badań porównawczych metod uczenia sieci neuronowych takich jak: metoda propagacji wstecznej błędów, rekurencyjna metoda najmniejszych kwadratów, metoda Zangwill'a, metoda algorytmów ewolucyjnych. Celem tych badań jest dobieranie najefektywniejszej metody uczenia do projektowania adaptacyjnego neuronowego regulatora napięcia generatora synchronicznego.metody uczenia, sieć neuronowa, neuronowy regulator...
-
Sieci neuronowe jako alternatywny sposób uzyskania modelu obliczeniowego
PublicationW pracy zaprezentowano i omówiono rodzaje sieci neuronowych, obszary ich zastosowań oraz metody uczenia. Przedstawiono teorie działania oraz ich interpretacje matematyczną i numeryczną. Szczególną uwagę zwrócono na możliwości uzyskania modelu obliczeniowego oraz obszarów jego stosowania przez wzgląd na unikalne cech Sztucznych Sieci Neuronowych (SSN). Jako przykład pracy sieci zaprezentowano model obliczeniowy identyfikujący własności...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Comparative study of methods for artificial neural network training.
PublicationPrzedstawiono wyniki badań porównawczych następujących metod uczenia sieci neuronowych: propagacji wstecznej błędów, rekursywnej metody najmniejszych kwadratów, metody Zangwill'a i algorytmów ewolucyjnych. Badania dotyczyły projektowania adaptacyjnego regulatora neuronowego napięcia generatora synchronicznego.
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Wojciech Jędruch dr hab. inż.
People -
Architektury sieci neuronowych
e-Learning CoursesPrzedmiot prowadzony na studiach podyplomowych "Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu technicznym" prowadzonych na wydziale ZIE.
-
Zaawansowane Architektury Sieci Neuronowych
e-Learning CoursesCelem przedmiotu jest zaznajomienie studentów z zasadami tworzenia własnych architektur sieci neuronowych dostosowanych do zadanego problemu i dostępnych danych poprzez analizę wybranych, istniejących zaawansowanych modeli pojawiających się w literaturze naukowej ostatnich lat. Motywacją do studiowania nietypowych architektur jest to, że odpowiednio dopasowana architektura modelu (a więc prawidłowo narzucone "indukcyjne ukierunkowanie"...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Zaawansowane Architektury Sieci Neuronowych
e-Learning Courses -
Zastosowanie sieci neuronowych w cyfrowej syntezie dźwięku
PublicationRozwój technik związanych z uczeniem maszynowym umożliwia nowe podejście i nowe definiowanie wielu dotychczasowych problemów. Heurystyczne algorytmy stosowane do problemów takich jak klasyfikacja danych w postaci wektorów cech, czy wyróżnianie grup obiektów o podobnych własnościach mogą znaleźć także zastosowanie w takich dziedzinach jak analiza i synteza dźwięków muzycznych. W referacie przybliżone zostały podstawowe zasady projektowania...
-
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO ANALIZY ODPOWIEDZI MATRYC CZUJNIKÓW GAZU
PublicationW pracy zaprezentowano efekt wykorzystania sztucznych sieci neuronowych w procesie analizy odpowiedzi matryc czujników gazu. Przedstawione zostały podstawy teoretyczne sieci neuronowej jednokierunkowej oraz dwóch algorytmów uczenia tej sieci, następnie została ona wykorzystana do klasyfikacji substancji lotnych na podstawie pomiarów matrycy sześciu rezystancyjnych półprzewodnikowych czujników gazu. Przy użyciu środowiska obliczeniowego...
-
WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE
PublicationW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...
-
Zaawansowane architektury sieci neuronowych 2024
e-Learning Courses -
Warstwy Sieci Neuronowych w Tensorflow
e-Learning CoursesPrzedmiot prowadzony na studiach podyplomowych "Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu technicznym" prowadzonych na wydziale ZIE.
-
Wykorzystanie sieci neuronowych do syntezy mowy wyrażającej emocje
PublicationW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opratych na mowie i możliwości ich wykprzystania w syntezie mowy z emocjami stosując do tego celu sieci neuronowe. Wskazano również przydatnośc parametrów typowo stosowanych do rozpoznawania mowy w detekcji emocji w śpiewie i rozróżnianiu tych emocji w obu przypadkach. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy...
-
Zastosowanie algorytmu ewolucyjnego do uczenia neuronowego regulatora napięcia generatora synchronicznego. Evolutionary algorithm for training a neural network of synchronous generator voltage controller
PublicationNajpopularniejsza metoda uczenia wielowarstwowych sieci neuronowych -metoda wstecznej propagacji błędu - charakteryzuje się słabą efektywnością. Z tego względu podejmowane są próby stosowania innych metod do uczenia sieci. W pracy przedstawiono wyniki uczenia sieci realizującej regulator neuronowy, za pomocą algorytmu ewolucyjnego. Obliczenia symulacyjne potwierdziły dobrą zbieżność algorytmu ewolucyjnego w tym zastosowaniu.
-
Ziemowit Suligowski prof. dr hab. inż.
People -
Prognozirovanie svojstv betonov s pomoŝ'û iskusstvennyh nejronovyh setej
PublicationObserwacje mózgu ludzkiego oraz podstawowych komórek z jakich się składa (neuronów), doprowadziły do prób modelowania niedużych układów połączonych neuronów. Układy te, zwane w literaturze jako sieci neuronowe lub sieci neuropodobne (ang. neural network) wykazują pewne cechy zbliżone do cech mózgu. Są nimi np. zdolność uczenia i kojarzenia. Choć znany obecnie model matematyczny neuronu jest dość skomplikowany, to zachęcające wyniki...
-
Podstawy uczenia głębokiego 2023/24
e-Learning CoursesKurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka. Obejmuje wprowadzenie do nadzorowanego uczenia maszynowego, budowę podstawowych sztucznych sieci neuronowych oraz algorytmów ich uczenia, a także bardziej zaawansowane architektury (sieci splotowe, rekurencyjne, transformery) i techniki regularyzacji i optymalizacji.
-
Podstawy uczenia głębokiego 24/25
e-Learning CoursesKurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka. Obejmuje wprowadzenie do nadzorowanego uczenia maszynowego, budowę podstawowych sztucznych sieci neuronowych oraz algorytmów ich uczenia, a także bardziej zaawansowane architektury (sieci splotowe, rekurencyjne, transformery) i techniki regularyzacji i optymalizacji.
-
Identyfikacja parametrów funkcjonalnych analogowych układów elektronicznych z zastosowaniem sztucznych sieci neuronowych
PublicationPrzedmiotem artykułu jest metoda identyfikacji parametrów funkcjonalnych analogowych układów elektronicznych w dziedzinie czasu. Testowany układ pobudzany jest sygnałem pomiarowym zoptymalizowanym za pomocą algorytmu genetycznego. Identyfikacja parametrów funkcjonalnych polega na odwzorowaniu wyników pomiarów odpowiedzi układu w dziedzinie czasu w przestrzeń parametrów funkcjonalnych z wykorzystaniem sztucznej sieci neuronowej....
-
Bożena Kostek prof. dr hab. inż.
People -
Rafał Łangowski dr inż.
PeopleRafał Łangowski received the M.Sc. and the Ph.D. degrees (Hons.) in control engineering from the Faculty of Electrical and Control Engineering at the Gdańsk University of Technology in 2003 and 2015, respectively. From 2007 to 2014, he held the specialist as well as manager positions at ENERGA, one of the biggest energy enterprises in Poland. He is currently an Assistant Professor with the Department of Intelligent Control and...
-
Neural nets application in diagnostics of industrial robots
PublicationPrzedstawiono wyniki wstępnych badań nad możliwością zastosowania sztucznych sieci neuronowych w procesie diagnozowania stanu technicznego robotów przemysłowych z napędem elektrycznym. Omówiono proces projektowania sieci neuronowych, za pomocą których realizowano liniową predykcję zmian dokładności pozycjonowania jednokierunkowego robota IRB 6 powstających przy różnych obciążeniach i prędkościach manipulatora podczas pracy z celowo...
-
Przykład zastosowania i analiza metod sztucznej inteligencji w technice cieplnej i chłodniczej (cz. 1)
PublicationW artykule przedstawiono teorie działania oraz modele matematyczne i numeryczne sztucznych sieci neuronowych (SSN). Dokonano szczegółowegoomówienia rodzajów sieci, metod uczenia i obszarów możliwych zastosowań w technice cieplnej i chłodniczej, jako nowych alternatywnych metod uzyskania modelu numerycznego. Szczególną uwagę zwrócono na cechy SSN, które są unikalne i wyróżniające na tle innych metod. Zamieszczono przykład wykorzystania...
-
Przykład zastosowania i analiza metod sztucznej inteligencji w technice cieplnej i chłodniczej (cz. 2)
PublicationW artykule przedstawiono teorie działania oraz modele matematyczne i numeryczne sztucznych sieci neuronowych (SSN). Dokonano szczegółowegoomówienia rodzajów sieci, metod uczenia i obszarów możliwych zastosowań w technice cieplnej i chłodniczej, jako nowych alternatywnych metod uzyskania modelu numerycznego. Szczególną uwagę zwrócono na cechy SSN, które są unikalne i wyróżniające na tle innych metod. Zamieszczono przykład wykorzystania...
-
Neuronowy model mocy farmy wiatrowej
PublicationPopularność i rosnące możliwości sztucznych sieci neuronowych przyczyniają się do coraz to szerszego zastosowania przemysłowego. Szybki przyrost mocy elektrowni wiatrowych w krajowej sieci elektroenergetycznej (KSE) stawia trudne zadanie bilansowania mocy przed krajowymi Operatorami Sieci Dystrybucyjnych (OSD) i Operatorem Sieci Przesyłowej (OSP). Prawnym obowiązkiem prognozowania mocy farmy wiatrowej obarczony jest właściciel....
-
Neuronowy model mocy farmy wiatrowej
PublicationPopularność i rosnące możliwości sztucznych sieci neuronowych przyczyniają się do coraz to szerszego zastosowania przemysłowego. Szybki przyrost mocy elektrowni wiatrowych w krajowej sieci elektroenergetycznej (KSE) stawia trudne zadanie bilansowania mocy przed krajowymi Operatorami Sieci Dystrybucyjnych (OSD) i Operatorem Sieci Przesyłowej (OSP). Prawnym obowiązkiem prognozowania mocy farmy wiatrowej obarczony jest właściciel....
-
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
PublicationPomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak...
-
Sieci neuronowe oparte na prawach fizyki
PublicationWiele fizycznie nieuzasadnionych sieci neuronowych, mimo zadowalają- cej wydajności, generuje sprzeczności z logiką i prowadzi do rozbieżno- ści wyników z rzeczywistością. Jedną z metod poprawy funkcjonowania typowego modelu typu “black-box” na etapie uczenia, jest rozszerzenie jego funkcji kosztu o zależność bezpośrednio inspirowaną wzorem fizycz- nym. Niniejszy rozdział wyjaśnia koncepcję budowy sieci neuronowych opartych na...
-
Neural networks in the diagnostics of induction motor rotor cages.
PublicationW środowisku Lab VIEW została stworzona aplikacja służąca do pomiaru, prezentacji i zapisu przebiegów widma prądu stojana z uwzględnieniem potrzeb pomiarowych występujących podczas badania wirników silników indukcyjnych przy użyciu sieci neuronowych. Utworzona na bazie zbioru uczącego sieć Kohonena z powodzeniem rozwiązała stawiany przed nią problem klasyfikacji widm prądu stojana, a co za tym idzie również diagnozy stanu...
-
Sieci samouczące się
e-Learning CoursesCelem przedmiotu jest przekazanie studentowi wiedzy w zakresie teoretycznych i praktycznych aspektówdefiniowania i projektowania sztucznych sieci neuronowych zdolnych do samodzielnego uczenia sięrozwiązywania złożonych problemów decyzyjnych, w tym do aproksymacji funkcji użyteczności stanów lubakcji w uczeniu ze wzmocnieniem.
-
Krzysztof Nyka dr hab. inż.
PeopleKrzysztof Nyka, received MSc (1986) PhD (2002) and DSc (2020) degrees in telecommunication and electrical engineering from the Faculty of Electronics, Telecommunications and Informatics (ETI) of Gdańsk University of Technology (GUT), Poland. He is currently an Associate Professor at the Department of Microwaves and Antenna Engineering, Faculty of ETI, GUT. Before his academic career, he worked for the electronic industry (1984-1986). Research...
-
Prognozowanie mocy wytwórczej farmy wiatrowej
PublicationCelem pracy było opracowanie metody obliczeniowej oraz budowa narzędzia programowego do określenia produkcji mocy farmy wiatrowej na podstawie standardowej prognozy pogody z wyprzedzeniem jednej doby. W pracy przedstawiono rzeczywistą charakterystykę generacji mocy wytwórczej przemysłowych farm wiatrowych zależnej od zmiennych warunków wiatrowych. Analizując dane pomiarowe można znaleźć pewne zależności charakterystyczne. Wpływ...
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
Zygfryd Domachowski prof. dr hab. inż.
People -
Zastosowanie sztucznych sieci neuronowych do aproksymacji funkcji
PublicationW artykule opisano główne grupy zastosowań sztucznych sieci neuronowych (SSN). Ponadto opisano podstawowe typy sztucznych sieci neuronowych. Omówiono algorytm posługiwania się SSN oraz pokazano przykład ich zastosowania do aproksymacji funkcji.
-
Właściwości aproksymacyjne sztucznych sieci neuronowych (SSN)
PublicationOpisano budowę sztucznego neuronu, rodzaje sztucznych sieci neuronowych i ich zastosowanie. Przedstawiono SSN jako uniwersalny aproksymator oraz opisano problem jednoczesnej aproksymacji funkcji wraz z pochodnymi.
-
Metody uczenia optymalizacji wieloetapowych procesów decyzyjnych.
PublicationOptymalizacja wieloetapowych procesów decyzyjnych jest zdaniem, w którym zbiegają się metody pochodzące pierwotnie z różnych dziedzin: rachunku wariacyjnego, algorytmów optymalizacji i metod uczenia maszynowego rozpatrywanych w sztucznej inteligencji. W niniejszej pracy podjęto próbę zestawienia różnych metod oraz podano wyniki optymalizacji przykładowego zadania z zastosowaniem algorytmów ewolucyjnych.
-
Klasyfikacja tekstu przy użyciu grafowych sieci neuronowych
PublicationWspółczesnym algorytmom analizy tekstu wciąż daleko do ludzkiego poziomu jego zrozumienia. Jednym z wyzwań jest znajdowanie przez maszynę związków pomiędzy odległymi fragmentami tekstu. Próbą rozwiązania tego problemu są grafowe reprezentacje tekstu, które bardzo dobrze sprawdzają się w przedstawianiu złożonych zależności. W tekście opisane zostały dwie metody grafowej reprezentacji tekstu oraz algorytm grafowych konwolucyjnych...
-
Implementacja Sztucznych sieci neuronowych w środowisku LabVIEW.
PublicationPrzedstawiono możliwości oraz strukturę zrealizowanego przez autora modułu do implementacji sztucznych sieci neuronowych w środowisku LabVIEW.
-
Zastosowanie algorytmu ewolucyjnego do trenowania jednokierunkowych płaskich sztucznych sieci neuronowych
PublicationW artykule przedstawiono zastosowanie algorytmu ewolucyjnego do trenowania jednokierunkowych, płaskich, sztucznych sieci neuronowych. Przy użyciu proponowanej metody wytrenowano trzy sieci neuronowe do klasyfikacji problemu parity-3, parity-4 oraz parity-5. Otrzymane wyniki porównano z wynikami uzyskanymi przy użyciu metody wstecznej propagacji błędu ze wględu na liczbę iteracji potrzebną do wytrenowania danej sieci oraz ze względu...
-
Optymalizacja treningu i wnioskowania sieci neuronowych
PublicationSieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...
-
Zastosowanie sztucznych sieci neuronowych w analizie sygnałów elektrokardiograficznych
PublicationCelem pracy było przebadanie możliwości zastosowania sztucznych sieci neuronowych do analizy i rozpoznawania sygnałów EKG. Artykuł zawiera przegląd zagadnień dotyczących EKG, pozyskiwania i interpretacji sygnałów oraz zastosowania sztucznych sieci neuronowych do diagnostyki. Znaczącym elementem pracy jest próba zaimplementowania w programie Matlab systemu rozróżniającego sygnały różnego typu.