Search results for: WAVE METHOD
-
On the Nonlinear Effects of Magnetoacoustic Perturbations in a Perfectly Conducting Viscous and Thermoconducting Gas
PublicationNonlinear effects of planar and quasi-planar magnetosound perturbations are discussed. The plasma is as- sumed to be a Newtonian thermoconducting gas with infinite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles. Generation of the non-wave modes (magnetoacoustic heating and streaming) in the field of periodic and aperiodic magnetoacoustic perturbations is discussed. The results...
-
RMS-based damage detection in reinforced concrete beams: numerical simulations
PublicationImage-based damage detection methods using guided waves are well known and widely applied approaches in structural diagnostics. They are usually utilized in detection of surface damages or defects of plate-like structures. The article presents results of the study of applicability of imaging wave-based methods in detection in miniscule internal damage in the form of debonding. The investigations were carried out on numerical models...
-
Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20
PublicationWe report an investigation of the combined structural and electronic properties of the bronze Na1.5(PO2)4(WO3)20. Its low-dimensional structure and possible large reconstruction of the Fermi surface due to charge density wave instability make this bulk material a natural superlattice with a reduced number of carriers and Fermi energy. Signatures of multilayered two-dimensional (2D) electron weak localization are consequently reported,...
-
Acoustic Hysteresis in Flows with Different Kinds of Relaxation and Attenuation
PublicationGraphs in the thermodynamic plane acoustic pressure versus excess acoustic density representing acoustic hysteresis, are considered as indicators of relaxation processes, equilibrium parameters of a flow, and kinds of wave exciters. Some flows with deviation from adiabaticity are examined: the Newtonian flow of a thermocon- ducting gas, the flow of a gas with vibrational relaxation, the flow of liquid electrolyte with a chemical...
-
UNDERWATER NOISE GENERATED BY A SMALL SHIP IN THE SHALLOW SEA
PublicationStudy of the sea noise has been a subject of interest for years. The first work of this scope were published at the turn of the twentieth century by Knudsen (KNUDSEN et al., 1948) and G. Wenz (WENZ, 1962). Disturbances called "shipping noise" are one of the important components of the sea noise. In this work the results of an experimental research of underwater noise produced by a small ship of a classic propulsion are...
-
Measurement and visualization of sound intensity vector distribution in proximity of acoustic diffusers
PublicationIn this work, we would like to present analyses and visualizations of sound intensity distribution measured in proximity of an acoustic diffuser. Such distribution may be used for estimation of basic acoustic parameters of a diffuser. Measurement is performed with the use of a logarithmic sine sweep which allows for the analysis of waves scattered by the diffuser and rejecting the direct sound signal component. Pressure and sound...
-
Przegląd metod pomiaru temperatury przewodów linii napowietrznych wysokiego napięcia
PublicationW artykule przedstawiono przegląd metod pomiaru temperatury napowietrznych linii wysokiego napięcia stosowanych w celu poprawy niezawodności eksploatacji i w celu wyznaczania dopuszczalnej obciążalności linii. Omówiono system DOL dynamicznej obciążalności linii oraz bezdotykowe metody pomiaru temperatury: pomiar z użyciem pasywnych czujników SAW (ang. Surface acoustic wave sensor), DTS (distributed temperature sensing) z wykorzystaniem...
-
Hysteresis curves and loops for harmonic and impulse perturbations in some non-equilibrium gases
PublicationEvolution of sound in a relaxing gas whose properties vary in the course of wave propagation, is studied. A relaxing medium may reveal normal acoustic properties or be acoustically active. In the first case, losses in acoustic energy lead to an increase in internal energy of a gas similarly as it happens in Newtonian fluids. In the second case, acoustic energy increases in the course of sound propagation, and the internal energy...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Air journal bearing utilizing near-field acoustic levitation: stationary shaft case
PublicationResults of a study to examine a unique idea of self-levitating journal bearing are presented in this paper. the idea represents a radical departure from the current bearing technology. it utilisesacoustic levitation, which relies on the sound energy radiated by an object supporting a load. acoustic levitation has been demonstrated to support loads of up to 10 kg. in order to support a load theacoustic wave emitted by the radiating...
-
A spice equivalent circuit for modeling the performance of dual frequency echo-sounder
PublicationThe paper presents novel network equivalent circuit of piezoceramic circular disc transducers that takes into account thickness and radial mode of vibrations. The starting point of the analysis is 4-port description of circular disc element representing the solution of wave equation set in radial and thickness directions. The approximate solution for harmonic case is represented in the form of 4x4 matrix, which is synthesised and...
-
Modeling of multi-cavity Fabry-Perot optical fiber sensors
PublicationReflectance characteristics of a two-cavity extrinsic Fabry-Perot optical fiber sensor were investigated using computer modeling. Calculations were performed using a plane wave-based approach, selected for clarity of results. Based on the modeling results, it can be concluded that the two-cavity Fabry-Perot interferometer can be used to measure two different quantities, such as refractive index and temperature, independently. It...
-
Analog modelling in qualitative analysis of vibration propagation
PublicationThe theory of dynamic systems is usually used to model the real systems. The models are based on solving ordinary differential equations, partial or difference, which enable obtaining the relation between input signal and the system response (output signal). The analogy between those models and generalized dynamic systems or control systems can be practically used. Vibration propagation can be described in a similar way as the...
-
Sensitive Demonstration of the Twin-Core Couplers including Kerr Law Non-Linearity via Beta Derivative Evolution
PublicationTo obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr law is the sort of non-linearity addressed there. Because it offers solutions to problems with large tails or infinite fluctuations, the resulting...
-
Design and Optimization of a Compact Super-Wideband MIMO Antenna with High Isolation and Gain for 5G Applications
PublicationThis paper presents a super-wideband multiple-input multiple-output (SWB MIMO) antenna with low profile, low mutual coupling, high gain and compact size for microwave and millimeter wave (mm-wave) fifth-generation (5G) applications. A single antenna is a simple elliptical-square shape with a small physical size of 20 × 20 × 0.787 mm3. The combination of both square and elliptical shapes results in an exceptionally broad impedance...
-
Resonance Frequency Calculation of a Multilayer and Multipatch Spherical Microstrip Structure Using a Hybrid Technique
PublicationThis communication offers a rigorous analysis of the resonance frequency problem of a spherical microstrip structure mounted on a multilayer, dielectric-coated metallic sphere, with an electrically small radius. The structure consists of single or multiple metallic patches with arbitrary shapes. A full-wave analysis is employed with the use of proposed hybrid approach, combining the finite-difference technique with a spectral domain...
-
The Doppler effect in a bistatic system for determining the position of moving targets
PublicationThe article presents the theoretical analysis and the results of numerical calculations of the Doppler effect it occurs in a system designed to determine the position and speed of a moving target. The transmitter is the source of the signal and it emits a sinusoidal, acoustic and continuous wave. Signal reflected off a moving target is received by four hydrophones. Based on the signals, four Doppler shifts are determined and inserted...
-
FDTD-Compatible Green's function based on scalar discrete Green's function and multidimensional Z-transform
PublicationIn this contribution, a new formulation of the discrete Green's function (DGF) is presented for the finitedifference time-domain (FDTD) grid. Recently, dyadic DGF has been derived from the impulse response of the discretized scalar wave equation (i.e., scalar DGF) with the use of the multidimensional Z-transform. Its software implementation is straightforward because only elementary functions are involved and a single function...
-
On the Nonlinear Effects of Magnetoacoustic Perturbations in Optically Thin Quasi-Isentropic Plasmas
PublicationNonlinear effects of planar magnetosound perturbations in a plasma are discussed. Plasma is non-adiabatic due to optically thin radiation and external heating. For these reasons, thermal instability of a plasma may appear which makes it acoustically active. The plasma is assumed to be initially homogeneous ideal gas with infinite electrical conductivity permeated by a straight magnetic field which is orthogonal to the trajectories...
-
MESOSCALE FUNCTIONS OF GPS SLANT DELAY
PublicationThe paper presents a computer module for GPS slant delay determination using data from COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere which is run on IA64 Feniks computer cluster in the Department of Civil Engineering and Geodesy of the Military University of Technology. The slant delay is the result of integrating the ray (eikonal) equation for the spatial function...
-
Ultrawideband transmission in physical channels: a broadband interference view
PublicationThe superposition of multipath components (MPC) of an emitted wave, formed by reflections from limiting surfaces and obstacles in the propagation area, strongly affects communication signals. In the case of modern wideband systems, the effect should be seen as a broadband counterpart of classical interference which is the cause of fading in narrowband systems. This paper shows that in wideband communications, the time- and frequency-domain...
-
Calculation of electron scattering lengths on Ar, Kr, Xe, Rn and Og atoms
PublicationFocusing on the noble gases, we calculate the scattering potential using the Dirac-Coulomb Hamiltonian supplemented with a model polarization potential. We determine the scattering lengths using two methods, namely phase shifts for very small scattering energies and the shape of the wave function for zero scattering energy. We compare our theoretical electron scattering length results on Ar, Kr and Xe atoms with existing experimental...
-
Displacement Sensors Based on the Phase of the Reflection Coefficient of a Split Ring Resonator Loaded Transmission Line
Publication— In this paper, novel displacement sensors using a microstrip loaded with a pair of split ring resonators (SRRs) are proposed. It is shown that the phase of the reflection coefficient from the loading SRRs can be used for displacement sensing. The paper also proposes a differential version of the sensor that benefits from a higher sensitivity and reference zero, which is useful for alignment purposes. It is further shown that...
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublicationDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Extending the Frequency Limit of Microstrip-Coupled CSRR Using Asymmetry
PublicationAbstract— This article explains the frequency limitation in designing microstrip circuits based on a complementary split-ring resonator (CSRR) and reports a novel technique for increasing its operating frequency, which makes the CSRR suitable for high-frequency applications. This study helps in synthesizing the dimensions of symmetric CSRR (SCSRR) and asymmetric CSRR (ACSRR) circuits, which shows the applicability of the proposed...
-
One-Dimensional Modeling of Flows in Open Channels
PublicationIn this chapter, modeling of the unsteady open channel flow using one-dimensional approach is considered. As this question belongs to the well-known and standard problems of open channel hydraulic engineering, comprehensively presented and described in many books and publications, our attention is focused on some selected aspects only. As far as the numerical solution of the governing equations is considered, one can find out that...
-
On Design Optimization of Miniaturized Microscrip Dual-Band Rat-Race Coupler with Enhanced Bandwidth
PublicationIn the paper, a novel topology of a miniaturized wideband dual-band rat-race coupler has been presented. Small size of the circuit has been obtained by meandering transmission lines of the conventional circuit. At the same time, the number of independent geometry parameters has been increased in order to secure sufficient circuit flexibility in the context of its design optimization for dual-band operation. Optimum dimensions of...
-
Digital microcontroller for sonar waveform generator
PublicationGenerating sounding signals is essential for the operation of active sonar. The system should be highly reliable. This can be achieved through architecture, communication between the devices, and a well-designed and self–testing software. The system presented in the article is responsible for the generation of hydroacoustic sounding signals, and ensures proper interaction between power amplifiers and power supplies. Thanks to its...
-
Cost-efficient simulation-driven design of compact impedance matching transformers
PublicationIn this paper, an algorithmic framework for cost-efficient design optimization of miniaturized impedance matching transformers has been presented. Our approach exploits a bottom-up design that involves translating the overall design specifications for the circuit at hand to its elementary building blocks (here, compact microstrip resonant cells, CMRCs), as well as fast surrogate-assisted optimization of the cells followed by simulation-based...
-
COMPARISON OF INFINITE ELEMENT MODELS
PublicationThe main objective of this paper is to show the comparison of two models of infinite ab- sorbing layer with increasing damping in numerical investigations of elastic wave prop- agation in unbounded structures. This has been achieved by the Authors by a careful in- vestigation of two different engineering structures characterised by gradually increasing geometrical and mathematical description complexities. The analysis included...
-
Miniaturized Dual-Band Bandpass Filter with Wide Inter Stopband for 5G Applications
PublicationThis article presents the design of a miniaturized dual-band bandpass filter with a wide inter-stopband and improved isolation. A novel topology comprising the series connection of shunt cascaded coupled lines and quarter-wavelength open stubs is proposed to realize the dual-band filter along with half-wavelength stepped-impedance stubs. The circuit characteristics contain nine transmission zeros and four poles. The transmission...
-
A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design
PublicationA conformal circularly polarized series-fed microstrip array design for broadside radiation is presented. The array aperture under design is conformal to a cylindrical surface of a given radius. The approach we present primarily addresses focusing of the circularly polarized major lobe of the conformal array by proper dimensioning of the aperture spacings. The proposed analytical models yield the values of the element spacings...
-
Fundamental properties of solutions to fractional-order Maxwell's equations
PublicationIn this paper, fundamental properties of solutions to fractional-order (FO) Maxwell's equations are analysed. As a starting point, FO Maxwell's equations are introduced in both time and frequency domains. Then, we introduce and prove the fundamental properties of electromagnetic field in FO electromagnetics, i.e. energy conservation, uniqueness of solutions, and reciprocity. Furthermore, the algorithm of the plane wave simulation...
-
The role of low-energy electrons in the charging process of LISA test masses
PublicationThe estimate of the total electron yield is fundamental for our understanding of the test-mass charging associated with cosmic rays in the Laser Interferometer Space Antenna (LISA) Pathfinder mission and in the forthcoming gravitational wave observatory LISA. To unveil the role of low energy electrons in this process owing to galactic and solar energetic particle events, in this work we study the interaction of keV and sub-keV...
-
Imaging polarimeter with high-accuracy measuring principles in crystal optics
PublicationAn imaging polarimeter based on the principles of high-accuracy polarimetry well known in crystal optics is proposed. The application of scientific digital cameras for performance light measurements leads to precise data on polarizers quality, i.e., maps of extinction ratio and transmission axis. Processing of numerous images, acquired at various settings in the polarizer-sample-analyser system, allows to determine the two-dimensional...
-
Recent and Emerging Applications of Graphene-based metamaterials in Electromagnetics
PublicationSurface Plasmon Polaritons (SPPs) operating in mid-infrared up to terahertz (THz) frequencies have been traditionally manufactured on expensive metals such as gold, silver, etc. However, such metals have poor surface confinement that limits the optical applications of SPPs. The invention of graphene is a breakthrough in plasmon-based devices in terms of design, fabrication and applications, thanks to its plasmonic wave distribution,...
-
Approximate Cramér–Rao bound on Doppler error in correlation-processing relatively narrowband noise radar
PublicationThe paper studies limitations on accuracy of Doppler estimation in continuous-wave noise radar with correlation processing. Second order properties of output of the correlation receiver are evaluated and an approximate Cram´er-Rao bound on errors of Doppler measurement is derived. The accuracy of Doppler measurements is found to be affected by the following factors: power spectral density of noise signal, frequency response of the...
-
Monosubstituted hydrazone β-cyclodextrin derivatives for pH-sensitive complex formation with aromatic drugs
PublicationA new and convenient synthetic pathway was developed to produce monosubstituted cyclodextrins with high yields. Each of the β-cyclodextrin derivatives described in this work has an aromatic substituent connected with cyclodextrin core by a pH-sensitive hydrazone linker and a carbon chain. Carbon chains differ in lengths having one or three carbon atoms. The correlation between water solubility and linker length was determined using...
-
Rapid Design Tuning of Miniaturized Rat-Race Couplers Using Regression-Based Equivalent Network Surrogates
PublicationA simple technique for fast design tuning of compact rat-race couplers is presented. Our approach involves equivalent circuit representation, corrected by nonlinear functions of frequency with coefficients extracted through nonlinear regression. At the same time, the tuning process connects two levels of coupler representation: EM simulation of the entire circuit and re-optimization of the coupler building blocks (slow-wave cells...
-
Extended phase diagram of RNiC2 family: Linear scaling of the Peierls temperature
PublicationPhysical properties for the late-lanthanide-based RNiC2 (R = Dy, Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW = 284, 335, 366, and 394 K for...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Knowledge-based performance-driven modeling of antenna structures
PublicationThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Simulation of the response of base-isolated buildings under earthquake excitations considering soil flexibility
PublicationThe accurate analysis of the seismic response of isolated structures requires the incorporation of the flexibility of supporting soil. However, it is often customary to idealize the soil as rigid during the analysis of such structures. In the present paper, seismic response time history analyses of base-isolated buildings modelled as single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) systems with linear and nonlinear...
-
Images of the Seabed of the Gulf of Gdansk Obtained by Means of the Parametric Sonar
PublicationThe main goal of this paper is to present results of the experimental investigation of the seabed by means of parametric echosounder in the form of chosen images. The phenomena of nonlinear interaction between two parallel beams of high intensity gives as a results very narrow beam of low frequency wave, that enables to penetrate the sea bottom. The first step of our investigations was calibration of all the elements of the measuring...
-
Effect of Simultaneous Valve Closures in Hydraulic Piping Systems
PublicationThe paper investigates wave interference (between pressure waves) occurring in simple hydraulic systems. Water hammer was induced by simultaneous closure of three valves located at the reservoirs of a “Y” type hydraulic system. Numerical simulations were carried out with the help of the freeware computer package Allievi enabling the reader to replicate results in a direct manner. The influence of the following quantities has been...
-
Modelling and simulations in time-fractional electrodynamics based on control engineering methods
PublicationIn this paper, control engineering methods are presented with regard to modelling and simulations of signal propagation in time-fractional (TF) electrodynamics. That is, signal propagation is simulated in electromagnetic media described by Maxwell’s equations with fractional-order constitutive relations in the time domain. We demonstrate that such equations in TF electrodynamics can be considered as a continuous-time system of...
-
Strongly anisotropic surface elasticity and antiplane surface waves
PublicationWithin the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic...
-
Nonreciprocal cavities and the time-bandwidth limit: comment
PublicationIn their paper in Optica 6, 104 (2019), Mann et al. claim that linear, time-invariant nonreciprocal structures cannot overcome the time-bandwidth limit and do not exhibit an advantage over their reciprocal counterparts, specifically with regard to their time-bandwidth performance. In this Comment, we argue that these conclusions are unfounded. On the basis of both rigorous full-wave simulations and insightful physical justifications,...