Filters
total: 8292
-
Catalog
- Publications 6563 available results
- Journals 400 available results
- Conferences 67 available results
- People 341 available results
- Inventions 6 available results
- Projects 25 available results
- Laboratories 2 available results
- e-Learning Courses 604 available results
- Events 15 available results
- Open Research Data 269 available results
displaying 1000 best results Help
Search results for: ANTENNA DESIGN, EM-DRIVEN DESIGN, LEARNING BY EXAMPLES, SURROGATE MODELING, DEEP LEARNING
-
Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies for expedited dimension scaling ofelectromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.Design/methodology/approach–A fast inverse surrogate modeling technique is described fordimension scaling of microwave and antenna structures. The model is established using referencedesigns obtained...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublicationA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features
PublicationDevelopment of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be re-source-intensive in terms of computing due to involving full-wave electromagnetic (EM) simu-lations. The cost-related issues are particularly pronounced whenever...
-
Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints
PublicationA robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port un-conventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically...
-
Expedited Simulation-Driven Multi-Objective Design Optimization of Quasi-Isotropic Dielectric Resonator Antenna
PublicationMajority of practical engineering design problems require simultaneous handling of several criteria. Although many of design tasks can be turned into single-objective problems using sufficient formulations, in some situations, acquiring comprehensive knowledge about possible trade-offs between conflicting objectives may be necessary. This calls for multi-objective optimization that aims at identifying a set of alternative, Pareto-optimal...
-
Concrete mix design using machine learning
PublicationDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Expedited Globalized Antenna Optimization by Principal Components and Variable-Fidelity EM Simulations: Application to Microstrip Antenna Design
PublicationParameter optimization, also referred to as design closure, is imperative in the development of modern antennas. Theoretical considerations along with rough dimension adjustment through supervised parameter sweeping can only yield initial designs that need to be further tuned to boost the antenna performance. The major challenges include handling of multi-dimensional parameter spaces while accounting for several objectives and...
-
Uniform sampling in constrained domains for low-cost surrogate modeling of antenna input characteristics
PublicationIn this letter, a design of experiments technique that permits uniform sampling in constrained domains is proposed. The discussed method is applied to generate training data for construction of fast replacement models (surrogates) of antenna input characteristics. The modeling process is design-oriented with the surrogate domain spanned by a set of reference designs optimized with respect to the performance figures and/or operating...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublicationDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublicationAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublicationConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Deep Learning w Keras
e-Learning CoursesKurs przeznaczony dla słuchaczy studiów podyplomowych Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu praktycznym - edycja biznesowa.
-
Reinforcement Learning Algorithm and FDTD-based Simulation Applied to Schroeder Diffuser Design Optimization
PublicationThe aim of this paper is to propose a novel approach to the algorithmic design of Schroeder acoustic diffusers employing a deep learning optimization algorithm and a fitness function based on a computer simulation of the propagation of acoustic waves. The deep learning method employed for the research is a deep policy gradient algorithm. It is used as a tool for carrying out a sequential optimization process the goal of which is...
-
Pareto Ranking Bisection Algorithm for EM-Driven Multi-Objective Design of Antennas in Highly-Dimensional Parameter Spaces
PublicationA deterministic technique for fast surrogate-assisted multi-objective design optimization of antennas in highly-dimensional parameters spaces has been discussed. In this two-stage approach, the initial approximation of the Pareto set representing the best compromise between conflicting objectives is obtained using a bisection algorithm which finds new Pareto-optimal designs by dividing the line segments interconnecting previously...
-
Reduced-cost surrogate modeling of input characteristics and design optimization of dual-band antennas using response features
PublicationIn this article, a procedure for low-cost surrogate modeling of input characteristics of dual-band antennas has been discussed. The number of training data required for construction of an accurate model has been reduced by representing the antenna reflection response to the level of suitably defined feature points. The points are allocated to capture the critical features of the reflection characteristic, such as the frequencies...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Deep learning in the fog
PublicationIn the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...
-
Multi-objective antenna design by means of sequential domain patching
PublicationA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
On EM-driven size reduction of antenna structures with explicit constraint handling
PublicationSimulation-driven miniaturization of antenna components is a challenging task mainly due to the presence of expensive constraints, evaluation of which involves full-wave electromagnetic (EM) analysis. The recommended approach is implicit constraint handling using penalty functions, which, however, requires a meticulous selection of penalty coefficients, instrumental in ensuring optimization process reliability. This paper proposes...
-
A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization
PublicationCompact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves sequential optimization...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Novel structure and design of compact UWB slot antenna
PublicationIn this paper, a novel structure of a compact UWB slot antenna is presented along with a simulation-driven design optimization algorithm for adjusting geometry parameters of the device. Our primary objective is to obtain small footprint of the structure while maintaining its acceptable electrical performance. It is achieved by introducing sufficiently large number of geometry degrees of freedom, including increased number of parameterized...
-
User -friendly E-learning Platform: a Case Study of a Design Thinking Approach Use
PublicationE-learning systems are very popular means to support the teaching process today. These systems are mainly used by universities as well as by commercial training centres. We analysed several popular e-learning platforms used in Polish universities and find them very unfriendly for the users. For this reason, the authors began the work on the creation of a new system that would be not only useful, but also usable for students, teachers...
-
Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors
PublicationMiniaturization has become of paramount importance in the design of modern antenna systems. In particular, compact size is essential for emerging application areas such as internet of things, wearable and implantable devices, 5G technology, or medical imaging. On the other hand, reduction of physical dimensions generally has a detrimental effect on antenna performance. From the perspective of numerical optimization, miniaturization...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublicationReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Modeling in Machine Design
e-Learning CoursesThe course is meant to show the students how to build calculation models in machine design
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublicationIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
A structure and design of a novel compact UWB MIMO antenna
PublicationIn the paper, a concept and design procedure of a novel compact MIMO slot antenna is presented. In order to achieve a better filling of available space, individual antennas are constrained to a triangular shape and optimized for a reduced size. The MIMO structure is then assembled using the two of previously designed antennas in orthogonal arrangement. Surrogate-assisted numerical optimization involving variable-fidelity electromagnetic...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublicationIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublicationBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Journal of Learning Design
Journals -
Basics of Deep Learning 24/25
e-Learning Courses -
Data augmentation for improving deep learning in image classification problem
PublicationThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures
PublicationMiniaturization is one of the important concerns of contemporary wireless communication systems, especially regarding their passive microwave components, such as filters, couplers, power dividers, etc., as well as antennas. It is also very challenging, because adequate performance evaluation of such components requires full-wave electromagnetic (EM) simulation, which is computationally expensive. Although high-fidelity EM analysis...
-
A Concept and Design Optimization of Compact Planar UWB Monopole Antenna
PublicationA novel structure concept of a compact UWB monopole antenna is introduced together with a low-cost design optimization procedure. Reduced footprint is achieved by introduction of a protruded ground plane for current path increase and a matching transformer to ensure wideband impedance matching. All geometrical parameters of the structure are optimized simultaneously by means of surrogate based optimization involving variable-fidelity...
-
Rapid antenna design optimization using shape-preserving response prediction
PublicationAn approach to rapid optimization of antennas using the shape-preserving response-prediction (SPRP) technique and coarsediscretization electromagnetic (EM) simulations (as a low-fidelity model) is presented. SPRP allows us to estimate the response of the high-fidelity EM antenna model, e.g., its reflection coefficient versus frequency, using the properly selected set of so-called characteristic points of the low-fidelity model...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublicationHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Technology-Enhanced Environmental Learning: Co-design of Educational Mobile Application Case
PublicationThe process of co-creating an educational mobile application to support environmentally friendly behavior is presented in this paper. The research material consisted of quantitative data collected on the application during the first testing phase by early adopters. The results suggest that the most frequently used features of the app were related to transport and educational activities. While women tended to split their time between...
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Multi-Fidelity Local Surrogate Model for Computationally Efficient Microwave Component Design Optimization
PublicationIn order to minimize the number of evaluations of high-fidelity (“fine”) model in the optimization process, to increase the optimization speed, and to improve optimal solution accuracy, a robust and computational-efficient multi-fidelity local surrogate-model optimization method is proposed. Based on the principle of response surface approximation, the proposed method exploits the multi-fidelity coarse models and polynomial interpolation...
-
Computer modeling and design of materials 2022/2023
e-Learning CoursesComputer modeling and design of materials, kierunek: Nanotechnologia, specjalność: Mathematics for new materials design, II stopień, semestr 3
-
Design space reduction and variable-fidelity EM simulations for feasible Pareto optimization of antennas
PublicationA computationally efficient procedure for multi-objective optimization of antenna structures is presented. In our approach, a response surface approximation (RSA) model created from sampled coarse-discretization EM antenna simulations is utilized to yield an initial set of Pareto-optimal designs using a multi-objective evolutionary algorithm. The final Pareto front representation for the high-fidelity model is obtained using surrogate-based...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...