Search results for: Computational algorithm
-
From the Dynamic Lattice Liquid Algorithm to the Dedicated Parallel Computer – mDLL Machine
Publication -
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublicationFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
Overview of Approaches for Compensating Inherent Metamaterials Losses
PublicationMetamaterials are synthetic composite structures with extraordinary electromagnetic properties not readily accessible in ordinary materials. These media attracted massive attention due to their exotic characteristics. However, several issues have been encountered, such as the narrow bandwidth and inherent losses that restrict the spectrum and the variety of their applications. The losses have become the principal limiting factor...
-
Modelling of FloodWave Propagation with Wet-dry Front by One-dimensional Diffusive Wave Equation
PublicationA full dynamic model in the form of the shallow water equations (SWE) is often useful for reproducing the unsteady flow in open channels, as well as over a floodplain. However, most of the numerical algorithms applied to the solution of the SWE fail when flood wave propagation over an initially dry area is simulated. The main problems are related to the very small or negative values of water depths occurring in the vicinity of...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublicationThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows
Publication -
Numerically Efficient Miniaturization-Oriented Optimization of an Ultra-Wideband Spline-Parameterized Antenna
PublicationDesign of ultra-wideband radiators for modern handheld applications is a challenging task that involves not only selection of an appropriate topology, but also its tuning oriented towards balancing the electrical performance and size. In this work, a low-cost design of a compact, broadband, spline-parameterized monopole antenna has been considered. The framework used for the structure design implements trust-region-based methods,...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublicationThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Fast EM-Driven Parameter Tuning of Microwave Circuits with Sparse Sensitivity Updates via Principal Directions
PublicationNumerical optimization has become more important than ever in the design of microwave components and systems, primarily as a consequence of increasing performance demands and growing complexity of the circuits. As the parameter tuning is more and more often executed using full-wave electromagnetic (EM) models, the CPU cost of the overall process tends to be excessive even for local optimization. Some ways of alleviating these issues...
-
Modular Approach for Modelling Warming Up Process in Water Installations with Flow-Regulating Elements
PublicationThe paper presents a new method for modelling the warming up process of a water system with elements regulating the flow in a stochastic manner. The paper presents the basic equations describing the work of typical elements which the water installation is composed of. In the proposed method, a new computational algorithm was used in the form of an iterative procedure enabling the use of boundary conditions that can be stochastically...
-
Influence of addition of carbon nanotubes on rheological properties of selected liquid lubricants - a computer simulation study
PublicationThis work is motivated by the improvement of anti-friction properties of lubricants by addition of CNTs proved experimentally in literature. In particular, a methodology is developed to compute the shear viscosity of liquid lubricants (Propylene Glycol) based on Molecular Dynamics simulation. Non-Equilibrium molecular dynamics (NEMD) approach is used with a reactive force field ReaxFF implemented in LAMMPS. The simulations are...
-
Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna
PublicationIn this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface...
-
Effective method for determining environmental loads on supporting structures for offshore wind turbines
PublicationThis paper presents a description of an effective method for determining loads due to waves, current and wind acting on the supporting structures of the offshore wind turbines. This method is dedicated to the structures consisting of the cylindrical or conical elements as well as (truncates) pyramids of polygon with a large number of sides (8 or more). The presented computational method is based on the Morison equation, which was...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublicationAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Recent advances in rapid multiobjective optimization of expensive simulation models in microwave and antenna engineering by Pareto front exploration
PublicationPractical engineering design problems are inherently multiobjective, that is, require simultaneous control of several (and often conflicting) criteria. In many situations, genuine multiobjective optimization is required to acquire comprehensive information about the system of interest. The most popular solution techniques are populationbased metaheuristics, however, they are not practical for handling expensive electromagnetic...
-
Effective method for determining environmental loads on supporting structures for offshore wind turbines
PublicationThis paper presents a description of an effective method for determining loads due to waves and current acting on the supporting structures of the offshore wind turbines. This method is dedicated to the structures consisting of the cylindrical or conical elements as well as (truncates) pyramids of polygon with a large number of sides (8 or more). The presented computational method is based on the Morison equation, which was originally...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublicationMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
The computational methods in the development of a novel multianalyte calibration technique for potentiometric integrated sensors systems
PublicationIn recent years, integration and miniaturization of ion-selective electrodes (ISEs) have brought many benefits resulting in the possibility of simultaneous determination of the ions concentration in small volume samples. One of the key problems related to the preparation of potentiometric integrated sensors systems (PISSs) is a calibration procedure due to the necessity to calibrate each particular sensor separately. The main aim...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublicationParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Low-Cost Quasi-Global Optimization of Expensive Electromagnetic Simulation Models by Inverse Surrogates and Response Features
PublicationConceptual design of contemporary high-frequency structures is typically followed by a careful tuning of their parameters, predominantly the geometry ones. The process aims at improving the relevant performance figures, and may be quite expensive. The reason is that conventional design methods, e.g., based on analytical or equivalent network models, often only yield rough initial designs. This is especially the case for miniaturized...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Improved Design Closure of Compact Microwave Circuits by Means of Performance Requirement Adaptation
PublicationNumerical optimization procedures have been widely used in the design of microwave components and systems. Most often, optimization algorithms are applied at the later stages of the design process to tune the geometry and/or material parameter values. To ensure sufficient accuracy, parameter adjustment is realized at the level of full-wave electromagnetic (EM) analysis, which creates perhaps the most important bottleneck due to...
-
Consequences of New Approach of Chemical Stability Tests of Active Pharmaceutical Ingredients (APIs)
PublicationThere is a great need of broaden look on stability tests of active pharmaceuticalingredients (APIs) in comparison with current requirements contained in pharmacopeia.By usage of many modern analytical methods the conception of monitoring the changesof APIs during initial stage of their exposure to harmful factors has been developed. Newknowledge must be acquired in terms of identification of each degradation...
-
Fast Design Closure of Compact Microwave Components by Means of Feature-Based Metamodels
PublicationPrecise tuning of geometry parameters is an important consideration in the design of modern microwave passive components. It is mandatory due to limitations of theoretical design methods unable to quantify certain phenomena that are important for the operation and performance of the devices (e.g., strong cross-coupling effects in miniaturized layouts). Consequently, the initial designs obtained using analytical or equivalent network...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublicationIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
Initializing the EM Algorithm for Univariate Gaussian, Multi-Component, Heteroscedastic Mixture Models by Dynamic Programming Partitions
Publication -
Low-Cost and Precise Automated Re-Design of Antenna Structures Using Interleaved Geometry Scaling and Gradient-Based Optimization
PublicationDesign of contemporary antennas is an intricate endeavor involving multiple stages, among others, tuning of geometry parameters. In particular, re-designing antennas to different operating frequencies, makes parametric optimization imperative to ensure the best achievable system performance. If the center frequency at the current design is distant from the target one, local tuning methods generally fail, whereas global algorithms...
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublicationThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor
PublicationHydrodynamic cavitation (HC) has been widely considered a promising technique for industrial-scale process intensifications. The effectiveness of HC is determined by the performance of hydrodynamic cavitation reactors (HCRs). The advanced rotational HCRs (ARHCRs) proposed recently have shown superior performance in various applications, while the research on the structural optimization is still absent. The present study, for the...
-
Characterization of Defects Inside the Cable Dielectric With Partial Discharge Modeling
PublicationThe continuous monitoring of power system devices is an important step toward keeping such capital assets safe. Partial discharge (PD)-based measurement tools provide a reliable and accurate condition assessment of power system insulations. It is very common that voids or cavities exist in every solid dielectric insulation medium. In this article, different voids are modeled and analyzed using an advanced finite element (FE)-based...
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublicationThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Monte Carlo simulations of the fracture resistance degradation of asphalt concrete subjected to environmental factors
PublicationThe paper presents the results of laboratory tests of SCB (semi-circular beam) samples of asphalt concrete, subjected to the destructive effect of water and frost as well as the aging processes. The determined values of material parameters show significant dispersions, which makes the design of mixtures difficult. Statistical analysis of the test results supplemented by computer simulations made with the use of the proprietary...
-
Detecting Apples in the Wild: Potential for Harvest Quantity Estimation
PublicationKnowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
PublicationEfficient seismic risk assessment aids decision-makers in formulating citywide risk mitigation plans, providing insights into building performance and retrofitting costs. The complexity of modeling, analysis, and post-processing of the results makes it hard to fast-track the seismic probabilities, and there is a need to optimize the computational time. This research addresses seismic probability and risk assessment of reinforced...
-
Rapid Antenna Optimization with Restricted Sensitivity Updates by Automated Dominant Direction Identification
PublicationMeticulous tuning of geometry parameters turns pivotal in improving performance of antenna systems. It is more and more often realized using formal optimization methods, which is demonstrably the most efficient way of handling multiple design variables, objectives, and constraints. Although in some cases a need for launching global search arises, a typical design scenario only requires local optimization, especially when a decent...
-
Topological-numerical analysis of a two-dimensional discrete neuron model
PublicationWe conduct computer-assisted analysis of a two-dimensional model of a neuron introduced by Chialvo in 1995 [Chaos, Solitons Fractals 5, 461–479]. We apply the method of rigorous analysis of global dynamics based on a set-oriented topological approach, introduced by Arai et al. in 2009 [SIAM J. Appl. Dyn. Syst. 8, 757–789] and improved and expanded afterward. Additionally, we introduce a new algorithm to analyze the return times...
-
Optimization of the Hardware Layer for IoT Systems using a Trust Region Method with Adaptive Forward Finite Differences
PublicationTrust-region (TR) algorithms represent a popular class of local optimization methods. Owing to straightforward setup and low computational cost, TR routines based on linear models determined using forward finite differences (FD) are often utilized for performance tuning of microwave and antenna components incorporated within the Internet of Things systems. Despite usefulness for design of complex structures, performance of TR methods...
-
Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching
PublicationFinding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective...
-
Modelowanie procesu wrzenia i kondensacji w rozszerzonym zakresie ciśnień zredukowanych
PublicationNiniejsza rozprawa doktorska ma na celu pokazanie wpływu uwzględnienia ciśnienia zredukowanego w analizowanym modelu opisują-cym współczynnik przejmowania ciepła na zbieżność z danymi eksperymentalnymi.Przedmiotem analizy jest półempiryczny model Mikielewicza w zastosowaniu do danych eksperymentalnych w kanałach konwencjonalnych i o małej średnicy płynów uznanych za perspektywiczne.W ramach realizowanych prac badawczych pozyskano...
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublicationSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Advanced Control With PLC—Code Generator for aMPC Controller Implementation and Cooperation With External Computational Server for Dealing With Multidimensionality, Constraints and LMI Based Robustness
PublicationThe manufacturers of Programmable Logic Controllers (PLC) usually equip their products with extremely simple control algorithms, such as PID and on-off regulators. However, modern PLCs have much more efficient processors and extensive memory, which enables implementing more sophisticated controllers. The paper discusses issues related to the implementation of matrix operations, time limitations for code execution within one PLC...
-
Rapid Design Centering of Multi-Band Antennas Using Knowledge-Based Inverse Models and Response Features
PublicationAccounting for manufacturing tolerances as well as uncertainties concerning operating conditions and material parameters is one of the important yet often neglected aspects of antenna development. Appropriate quantification of uncertainties allows for estimating the fabrication yield but also to carry out robust design (e.g., yield maximization). For reliability reasons, statistical analysis should be executed at the accuracy level...