Filters
total: 622
Search results for: OPTICAL SCANNING
-
Luminescent properties of Ln3+ doped tellurite glasses containing AlF3
PublicationThe low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence...
-
Optoelectronic investigation of nanodiamond interactions with human blood
PublicationWe present optoelectronic investigation of in vitro interactions of whole human blood with different nanodiamond biomarkers. Plasmo-chemical modifications of detonation nanodiamond particles gives the possibility for controlling their surface for biological applications. Optical investigations reveal the biological activity of nanodiamonds in blood dependent on its surface termination. We compare different types of nanodiamonds:...
-
The finite-difference simulation of x-rays propagation through a system of lenses
PublicationThe propagation of X-ray waves through an optical system consisting of 33 aluminum X-ray refractive lenses is considered. For solving the problem, a finite-difference method is suggested and investigated. It is shown that very small steps of the difference grid are necessary for reliable computation of propagation of X-ray waves through the system of lenses. It is shown that the wave phase is a function very quickly increasing...
-
A high-accuracy complex-phase method of simulating X-ray propagation through a multi-lens system
PublicationThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied. The error of simulation is analytically estimated and investigated. It was found that a very detailed difference grid is required for reliable and accurate calculations of the propagation of X-ray waves through a multi-lens...
-
Nonlinearity shaping in nanostructured glass-diamond hybrid materials for optical fiber preforms
PublicationNanodiamond integration with optical fibers has proved a compelling methodology for magneto-optics. We reveal that the applicability of nanodiamonds in nonlinear optics goes beyond the previous demonstrations of frequency converters. Instead, we exploit the recently reported volumetric integration of nanodiamonds along the optical fiber core and show that the nonlinear response of glasses can be manipulated by nanodiamonds. By...
-
Sol-gel Al2O3 antireflection coatings for silicon solar cells
PublicationPurpose: This paper presents the results of investigations on morphology and opticalproperties of the prepared aluminium oxide thin filmsDesign/methodology/approach: Thin films were prepared with use of sol-gel spincoating method. The changes of surface morphology were observed in topographic picturesperformed with the atomic force microscope AFM. Obtained roughness coefficients valueswere generated...
-
The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process
PublicationThe presented research was intended to seek new optical methods to investigate the demineralization process of bones. Optical examination of the bone condition could facilitate clinical trials and improve the safety of patients. The authors used a set of complementary methods: polarization-sensitive optical coherence tomography (PS-OCT) and Raman spectroscopy. Chicken bone samples were used in this research. To stimulate in laboratory...
-
Linking optical and electronic properties to photoresponse of heterojunctions based on titania nanotubes and chromium, molybdenum, and tungsten oxides
PublicationThe development of photosensitization strategies for titanium dioxide is necessary for the enhancement of its optical and electronic properties towards its application potential in solar photoelectrochemistry. In this work, significant differences in the photosensitizing capability of the 6th group transition metal oxides applied on the surface of titania nanotubes are reported. For the first time, correlations between the experimentally...
-
Optical properties of thin TiO2 film deposited on the fiber optic sensor head
PublicationThe presented study was focused on investigation of the titanium dioxide (TiO2) thin film deposited on the fiber tip. The intention of this investigation was using TiO2 film in the construction of the optical fiber sensor head. In the demonstrated construction TiO2 thin layer was deposited on the tip of a commonly used telecommunication single mode optical fiber (SMF-28) by means of the Atomic Layer Deposition (ALD). Thickness...
-
Fiber optic low-coherence Fabry-Pérot interferometer with ZnO layers in transmission and reflective mode: comparative study
PublicationA construction of a low-coherence fiber-optic Fabry-Pérot interferometer using a thin ZnO layer as a reflective surfaces was proposed and examined. In the investigated setup, the ZnO layer of thickness 200 nm were deposited on the face of the standard telecommunication single-mode optical fiber (SMF-28). Measurements of interference signal were performed for the interferometer working in the transmission and reflective mode, as...
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublicationThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
Polarization-dependent optical absorption in phosphorene flakes
PublicationThe interest of 2D materials is constantly increasing because of their very attractive mechanical, electrical and optical parameters. They have been used in many applications, e.g. photodetectors, sensors, modulators, insulators. One of the recently discovered 2D materials is phosphorene. In contrast to graphene, phosphorene has a direct bandgap tuned by numbers of layers in the 2D structure. The phosphorene flakes are strongly...
-
Ellipsometric study of carbon nitride films deposited by DC-magnetron sputtering
PublicationWe report the optical properties of a carbon nitride (CNx) film as a function of nitrogen concentration (N/C) of the deposited film. As nitrogen concentration is increased (N/C ratio) in a CNx film, the refractive index and band gap also increase. The real and imaginary parts, n and k (refractive index and extinction coefficient) of the complex refraction index of carbon nitride films were determined by spectroscopic ellipsometry...
-
Visual Detection of People Movement Rules Violation in Crowded Indoor Scenes
PublicationThe paper presents a camera-independent framework for detecting violations of two typical people movement rules that are in force in many public transit terminals: moving in the wrong direction or across designated lanes. Low-level image processing is based on object detection with Gaussian Mixture Models and employs Kalman filters with conflict resolving extensions for the object tracking. In order to allow an effective event...
-
Thermally tuneable optical and electrochemical properties of Au-Cu nanomosaic formed over the host titanium dimples
PublicationAu-Cu nanostructures offer unique optical and catalytic properties unlike the monometallic ones resulting from the specific interaction. Among others, they have the ability to exhibit surface plasmon resonance, electrochemical activity towards the oxygen and hydrogen evolution reaction (OER, HER) as well as improved photoresponse in relation to monometalic but those properties depend highly on the substrate where bimetallic structures...
-
Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3
PublicationAfter the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than...
-
Model of control plane of ASON/GMPLS network
PublicationASON (Automatic Switched Optical Network) is a concept of optical network recommended in G.8080/Y.1304 by ITU-T. Control Plane of this network could be based on GMPLS (Generalized Multi-Protocol Label Switching) protocols. This solution, an ASON control plane built on GMPLS protocols is named ASON/GMPLS. In the paper, we decompose the control plane problem and show the main concepts of ASON network. We propose a hierarchical architecture...
-
Fiber optic displacement sensor with signal analysis in spectral domain
PublicationIn this paper, a study of a low-coherence fiber optic displacement sensor is presented. The sensor consisted of a broadband source whose central wavelength was either at 1310 nm or 1550 nm, a sensing Fabry-Pérot interferometer operating in reflective mode and an optical spectrum analyzer acting as the detection setup. All these components were connected by a single-mode fiber coupler. Metrological parameters of the sensor were...
-
Response of a fiber-optic Fabry-Pérot interferometer to refractive index and absorption changes – modelling and experiments
PublicationThis paper describes how the refractive index and the absorption of investigated substances change the spectrum of the optical radiation at the output of the fiber-optic Fabry-Pérot interferometer. The modeling of the operation of the interferometer takes into account not only the spectra of the refractive index and the absorption of the medium that is inside the cavity, but also spectra of the refractive indices of the core and...
-
Low-coherence sensors with nanolayers for biomedical sensing
PublicationIn this paper, we describe the fiber optic low-coherence sensors using thin film. We investigated their metrological parameters. Presented sensors were made with the use of standard telecommunication single mode optical fiber (SMF28). Different materials were applied to obtain thick layers, such as boron doped diamond, silver and gold. The thickness of layers used in the experiments ranged from 100 nm to 300 nm. Measurements were...
-
Experimental Testbed of ASON/GMPLS architecture
PublicationThe paper presents the ASON/GMPLS architecture realized in the Department of Teleinformation Networks at Gdansk University of Technology based on the FSP 3000R7 ADVA Optical Networking platform. The FSP 3000R7 is a high-performance WDM networking system with GMPLS control plane for bidirectional transmission of optical signals. The system uses a modular structure which enables a flexible upgrade of capacity and functionality. The...
-
Determination of refractive index dispersion using fiber-optic low-coherence Fabry–Perot interferometer: implementation and validation
PublicationWe present the implementation and validation of low-coherence Fabry–Perot interferometer for refractive index dispersion measurements of liquids. A measurement system has been created with the use of four superluminescent diodes with different optical parameters, a fiber-optic coupler and an optical spectrum analyzer. The Fabry–Perot interferometer cavity has been formed by the fiber-optic end and mirror surfaces mounted on a micromechanical...
-
Polarimetric studies of L-arginine-doped potassium dihydrogen phosphate single crystals
PublicationConoscopic interference patterns, channelled spectra and polarimetric techniques have been used for the characterization of pure and doped (with L-arginine amino acid) potassium dihydrogen phosphate (KDP) single crystals. Experimental polarimetric data have been obtained for the frequently used wavelength of 633 nm and for two close wavelengths of 532 and 543 nm in a high-accuracy dual-wavelength polarimeter. The measurement of...
-
Recent and Emerging Applications of Graphene-based metamaterials in Electromagnetics
PublicationSurface Plasmon Polaritons (SPPs) operating in mid-infrared up to terahertz (THz) frequencies have been traditionally manufactured on expensive metals such as gold, silver, etc. However, such metals have poor surface confinement that limits the optical applications of SPPs. The invention of graphene is a breakthrough in plasmon-based devices in terms of design, fabrication and applications, thanks to its plasmonic wave distribution,...
-
Influence of pulse waves on the transmission of near-infrared radiation in outer-head tissue layers.
PublicationIn this study, we investigate the effect of pulse waves on the transmission of near-infrared radiation in the outer tissue layers of the human head. This effect is important in using optical radiation to monitor brain conditions based on measuring the transmission changes in the near-infrared radiation between the source and the detector, placed on the surface of the scalp. This is because the signal related to the changes in the...
-
Application of two-dimensional intensity maps in high-accuracy polarimetry
PublicationWe propose the analysis of 2D intensity contour maps which is based on the optical transmission function for the polarizer-specimen-analyzer system. A small modification of the high-accuracy universal polarimeter (HAUP) technique was used to measure the intensity maps (HAUP maps) and determine the phase retardation, linear dichroism (LD) parameters, and multiple light reflection contribution in uniaxial crystals. We have performed...
-
Luminance Distribution Measurements in CAVE-Type Virtual Reality Systems
PublicationIn this article, the immerse 3D visualization lab just opened at the Gdańsk University of Technology is presented. The effect of user “immersion,” it such virtual reality systems, is largely dependent on the optical properties of projected images. Luminance distribution of screens was measured and the luminance uniformity was determined and discussed.
-
Influence of LCVD technologicalparameters on propertiesof polyazomethine thin films
PublicationPurpose: The aim of this paper is to show influence of technological parameters (temperature and gas streamintensity) of low-temperature chemical vapour deposition (LCVD) on optical properties and morphology ofpolyazomethine thin films.Design/methodology/approach: Thin layers of poly (1,4-phenylene-methylenenitrilo-1,4-phenylenenitrilo-methylene) (PPI) were prepared by low temperature LCVD method with use of argon as a transport...
-
Spectroscopic and wireless sensor of hematocrit level
PublicationAn optical method for hematocrit measurement has been presented. the sensor, designed and developed by authors, consists of spectroscopic set-up controlled by a microcontroller. measurement results are sent via wireless module. experiment has confirmed the ability of the sensor to determine the hematocrit with appropriate measurementaccuracy.
-
Detection of gaseous compounds with different techniques
PublicationSensing technology has been developed for detection of gases in some environmental, industrial, medical, and scientific applications. The main tasks of these works is to enhance performance of gas sensors taking into account their different applicability and scenarios of operation. This paper presents the descriptions, comparison and recent progress in some existing gas sensing technologies. Detailed introduction to optical sensing...
-
Efficiency limit of excitonic photovoltaic cells under phosphor-based white LED illumination
PublicationThe limit of energy conversion of excitonic photovoltaic cells working under white light illumination generated by phosphor-based LED is analysed using the modified Giebink approach. Particularly, the impact of the optical energy gap and energy loss associated with the excitons dissociation at the heterojunction interface on power conversion efficiency of the device are discussed. From the results of our study it follows that the...
-
Protection in elastic optical networks
PublicationIn this article, we analyze gains resulting from the use of EON architectures with special focus on transportation of cloud-ready and content-oriented traffic in the context of network resilience. EONs are a promising approach for future optical transport networks and, apart from improving the network spectral efficiency, bring such new capabilities as squeezed protection, which reduces resource requirements in failure scenarios....
-
Detection of Face Position and Orientation Using Depth Data
PublicationIn this paper an original approach is presented for real-time detection of user's face position and orientation based only on depth channel from a Microsoft Kinect sensor which can be used in facial analysis on scenes with poor lighting conditions where traditional algorithms based on optical channel may have failed. Thus the proposed approach can support, or even replace, algorithms based on optical channel or based on skeleton...
-
Fractal dimension for bending–torsion fatigue fracture characterisation
PublicationFracture surfaces after biaxial fatigue tests were compared using fractal dimension for three types of metallic materials in smooth and notched specimens made of S355J2 and 10HNAP steels and 2017-T4 aluminium alloy, considering both proportional and nonproportional cyclic loading. High-resolution optical 3D measurement studies were performed on the entire fracture surface. A direct correlation between fractal dimension and fatigue...
-
Influence of technological conditions on optical properties and morphology of spin-coated PPI thin films
PublicationPurpose: The aim of this paper is to show technical and chemical parameters influence on opticalproperties and morphology of poly (1,4-phenylenemethylenenitrilo- 1,4-phenylenenitrilomethylene) (PPI)thin films prepared by spin-coating methodDesign/methodology/approach: PPI thin films were prepared by spin-coating method with variousspinning rates and molar concentrations. The monomers, terephthal aledehyde (TPA) and p-phenylenediamine(PPDA),...
-
Studying of polyoxadiazole with Si atom in the backbone
PublicationPurpose: The aim of this paper is to show properties of spin-coated thin films of new polymer having siliconatom in the backbone. This amorphous polymer has appeared to be applied as active films in organic devices (asOLED).Design/methodology/approach: Thin films of 4-(diphenyl(4-(4-(5-(p-tolyoxy)phenyl)-1,3,4-oxadiazol-2-yl)phenyloamino)methyl)-phenyl)silyl)-1-methylbenzamide (Oxad–Si-B) were obtained by spin-coating method.The...
-
Absorption spectroscopy setup for determination of whole human blood and blood–derived materials spectral characteristics
PublicationA dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood...
-
Optoelectronic device for hematocrit measurements
PublicationAn optoelectronic system for measurements of hematocrit level (HCT) in the whole human blood is presented. Proposed system integrates a dedicated optoelectronic sensor, a microcontroller and a small LCD display in a low cost, battery-powered, handheld device. Chosen method for determining blood hematocrit level is based on optical properties of whole blood in visible and NIR wavelength range. Measurements with the use of proposed...
-
Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications
PublicationStarting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review...
-
Topography measurement methods evaluation for entire bending-fatigued fracture surfaces of specimens obtained by explosive welding
PublicationIn this paper, the methods of compensation of differences in the results of entire bending-fatigued fracture surface topographies were presented. The roughness evaluation was performed with a focus variation microscope and confocal surface topography measurement techniques. The differences in the ISO 25178 roughness parameters were investigated and procedures for their compensation were studied. It was found that various types...
-
Non-invasive investigation of a submerged medieval harbour, a case study from Puck Lagoon
PublicationThis study presents an innovative approach to underwater archaeological prospection using non-invasive methods of seabed exploration. The research focuses on the Puck medieval harbour, a cultural heritage site, and utilises acoustic and optical underwater remote-sensing technology. The primary objectives include optimising the use of Airborne Laser Bathymetry in underwater archaeology, enhancing the filtration process for mapping...
-
In-situ monitoring of electropolymerization processes at boron-doped diamond electrodes by Mach-Zehnder interferometer
PublicationIn this work, the Mach-Zehnder interferometer was designed to monitor the electrochemical processes conducted at boron-doped diamond electrode surface. The diamond electrodes were synthesized via Microwave Plasma-Assisted Chemical Vapor Deposition on optical grade quartz glass. The achieved transmittance in working are of diamond electrodes reached 55 %. A cage system-based Mach-Zehnder interferometer was used which allowed the...
-
Salinity enhances high optically active L-lactate production from co-fermentation of food waste and waste activated sludge: Unveiling the response of microbial community shift and functional profiling
PublicationLactic acid (LA), a versatile platform molecule, can be fermented from organic wastes, such as food waste and waste activated sludge. In this study, an efficient approach using salt, a component of food waste as an additive, was proposed to increase LA production. The LA productivity was increased at 10 g NaCl/L and optical pure L-lactate was obtained at 30 g NaCl/L. The enhancement of LA was in accordance with the increased solubilization...
-
Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS
PublicationA sensor working in multiple domains may offer enhanced information about the properties of an investigated analyte, including those containing biological species. It has already been shown that a dual-domain sensing capability, i.e., in optical and electrochemical domains, can be offered by lossy-mode resonance (LMR) sensors based on indium-tin-oxide (ITO) thin film. The spectral response of the LMR sensors depends on the refractive...
-
Fiber-optic sensors based on microspheres with nanocoatings (Zastosowanie mikrosfer optycznych z cienkowarstwowymi pokryciami w czujnikach światłowodowych)
PublicationTemperature is one of the most important physical quantities. Temperature measurements are used in every field of life, especially electronics, electrical engineering, energy-related fields, including energy source and storage devices. The goal of this dissertation is to design and optimize the microsphere-based fiber-optic sensors construction for measurement of the sensor surrounding medium temperature, including selection of...
-
Optical-Fiber Microsphere-Based Temperature Sensors with ZnO ALD Coating—Comparative Study
PublicationThis study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor...
-
PROGRAMMABLE YANG - BASED INTERFACE IN CONTROL OF OPTICAL TRANSPORT NETWORK
PublicationSince over a decade we observe intensive effort of research institutions and industrial consortia on extending flexibility and automation of the transport network control also known under the term network programmability. Key aspect of each programming interface is ability to evolve but also sensitivity to future modifications. As indicated in the past work in the specific context of optical transport networks an important criterion...
-
Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering.
PublicationIron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5~Pa, 1.5~Pa, and 5.0~Pa). The HiPIMS system was operated at a repetition frequency $f = 100$~Hz with a duty cycle of 1~\%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma...
-
Optical photoluminescent, and electroluminescent properties of organic solids
PublicationThis chapter discusses optical, photoluminescence and electroluminescence properties of organic materials. First, the spectral features of individual molecules and molecular solid states are analysed. Next, the excitonic processes in organic materials are discussed. The chapter reviews experimental methods leading to the determination of basic excitonic parameters. Finally, the electroluminescence phenomena in organic materials...
-
Zastosowanie optycznej tomografii niskokoherentnej do 2-wymiarowego obrazowania cienkich warstw polimerów
PublicationW artykule omówiono zasadę działania i przedstawiono podstawowe właściwości systemu OCT (Optical Coherence Tomography). Na przykładzie folii polietylenowej przedyskutowano możliwości wykorzystania systemu do badanie wewnętrznej struktury warstwowej obiektów niebiologicznych. Przedstawiono i omówiono wyniki przeprowadzonych badań nad warstwowymi materiałami przeźroczystymi.