Filters
total: 11488
-
Catalog
- Publications 9010 available results
- Journals 344 available results
- Conferences 129 available results
- Publishing Houses 1 available results
- People 263 available results
- Projects 21 available results
- Laboratories 1 available results
- Research Teams 1 available results
- Research Equipment 2 available results
- e-Learning Courses 296 available results
- Events 16 available results
- Open Research Data 1404 available results
displaying 1000 best results Help
Search results for: FACIAL RECOGNITION, DROWSINESS, REAL-TIME MONITORING, MACHINE LEARNING, NEURAL NETWORKS, DRIVER, FATIGUE
-
Systemy z Uczeniem Maszynowym / Systems with Machine Learning
e-Learning Courses -
PCR and real-time PCR assays to detect fungi of Alternaria alternata species
PublicationFungi of the Alternaria genus are mostly associated with allergic diseases. However, with a growing number of immunocompromised patients, these fungi, with A. alternata being the most prevalent one, are increasingly recognized as etiological agents of infections (phaeohyphomycoses) in humans. Nowadays, identification of Alternaria spp. requires their pure culture and is solely based on morphological criteria. Clinically, Alternaria...
-
Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
PublicationIn recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublicationTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Monitoring objects over networks
PublicationW pracy rozważa się uniwersalny pomysł na monitorowanie obiektów przemysłowych, firmowych i prywatnych, z inteligentnymi budynkami włšcznie. Rozmaite zadania diagnostyczne, sterownicze i zarzšdcze łatwo mogš być zintegrowane w taki projekt. Współczesne narzędzia technologii informacyjnych (IT) mogš być spożytkowane w celu stworzenia kompletnych i efektywnych systemów realizujšcych takie zadania. Oparłszy się na wysokich technologiach...
-
The Neural Knowledge DNA Based Smart Internet of Things
PublicationABSTRACT The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. Smartness, however, remains a substantial challenge for IoT applications. Recent advances in networked sensor technologies, computing, and machine learning have made it possible for building new smart IoT applications. In this paper, we propose a novel approach: the Neural Knowledge DNA based Smart Internet...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Identification of Emotions Based on Human Facial Expressions Using a Color-Space Approach
PublicationHCI technology improves human-computer interaction. Such communication can be carried out with the use of emotions that are visible on the human face since birth. In this paper the Emotion system for detecting and recognizing facial expressions, developed in the MSc work, is presented. The system recognizes emotion from webcam video in real time. It is based on color segmentation and morphological operations. The system uses a...
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublicationThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
ENVIRONMENTAL MONITORING AND ASSESSMENT
Journals -
Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review
PublicationThe automatic emotion recognition domain brings new methods and technologies that might be used to enhance therapy of children with autism. The paper aims at the exploration of methods and tools used to recognize emotions in children. It presents a literature review study that was performed using a systematic approach and PRISMA methodology for reporting quantitative and qualitative results. Diverse observation channels and modalities...
-
Automatic Image and Speech Recognition Based on Neural Network
Publication -
Robot Eye Perspective in Perceiving Facial Expressions in Interaction with Children with Autism
PublicationThe paper concerns automatic facial expression analysis applied in a study of natural “in the wild” interaction between children with autism and a social robot. The paper reports a study that analyzed the recordings captured via a camera located in the eye of a robot. Children with autism exhibit a diverse level of deficits, including ones in social interaction and emotional expression. The aim of the study was to explore the possibility...
-
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublicationThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublicationThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Detecting Lombard Speech Using Deep Learning Approach
PublicationRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
NETWORKS
Journals -
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Automotive Validation Functions for On-line Test Evaluation of Hybrid Real-time Systems
PublicationThe aim of this paper is to present the means of black-box on-line test evaluation for hybrid real-time systems. The described procedures can be used for the model-based testing process so as to improve its effectiveness. In particular, intelligent automotive validation functions are considered, which are divided into different types depending on the nature of the evaluated issue. All provided definitions are specified on the meta-model...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Emotion Recognition for Affect Aware Video Games
PublicationIn this paper the idea of affect aware video games is presented. A brief review of automatic multimodal affect recognition of facial expressions and emotions is given. The first result of emotions recognition using depth data as well as prototype affect aware video game are presented
-
Monitoring the gas turbine start-up phase on the platform using a hierarchical model based on Multi-Layer Perceptron networks
PublicationVery often, the operation of diagnostic systems is related to the evaluation of process functionality, where the diagnostics is carried out using reference models prepared on the basis of the process description in the nominal state. The main goal of the work is to develop a hierarchical gas turbine reference model for the estimation of start-up parameters based on multi-layer perceptron neural networks. A functional decomposition...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Is it too late now to say we’re sorry? Examining anxiety contagion and crisis communication strategies using machine learning
PublicationIn this paper, we explore the role of perceived emotions and crisis communication strategies via organizational computer-mediated communication in predicting public anxiety, the default crisis emotion. We use a machine-learning approach to detect and predict anxiety scores in organizational crisis announcements on social media and the public’s responses to these posts. We also control for emotional and language tones in organizational...
-
Gas Detection Using Resistive Gas Sensors And Radial Basis Function Neural Networks
PublicationWe present a use of Radial Basis Function (RBF) neural networks and Fluctuation Enhanced Sensing (FES) method in gas detection system utilizing a prototype resistive WO3 gas sensing layer with gold nanoparticles. We investigated accuracy of gas detection for three different preprocessing methods: no preprocessing, Principal Component Analysis (PCA) and wavelet transformation. Low frequency noise voltage observed in resistive gas...
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublicationMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
Neural Network Subgraphs Correlation with Trained Model Accuracy
PublicationNeural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublicationThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Assessing the time effectiveness of trust management in fully synchronised wireless sensor networks
PublicationThe paper presents the results of the time effectiveness assessment of the distributed WSN Cooperative Trust Management Method - WCT2M in a fully synchronized Wireless Sensor Network (WSN). First we introduce some basic types of synchronization patterns in WSN based on the idea of sleep scheduling. Then we explain how WCT2M works in the network applying the fully synchronized sleep scheduling pattern. Such networks were subjected...
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublicationThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublicationThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Monitoring of the Process of System Information Broadcasting in Time
PublicationOne of the problems of quantum physics is how a measurement turns quantum, noncopyable data, towards copyable classical knowledge. We use the quantum state discrimination in a central system model to show how its evolution leads to the broadcasting of the information, and how orthogonalization and decoherence factors allow us to monitor the distance of the state in question to the one perfectly broadcasting information, in any...
-
Intelligent turbogenerator controller based on artifical neural network
PublicationThe paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublicationA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublicationMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Language Models in Speech Recognition
PublicationThis chapter describes language models used in speech recognition, It starts by indicating the role and the place of language models in speech recognition. Mesures used to compare language models follow. An overview of n-gram, syntactic, semantic, and neural models is given. It is accompanied by a list of popular software.
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublicationExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
Automatic Watercraft Recognition and Identification on Water Areas Covered by Video Monitoring as Extension for Sea and River Traffic Supervision Systems
PublicationThe article presents the watercraft recognition and identification system as an extension for the presently used visual water area monitoring systems, such as VTS (Vessel Traffic Service) or RIS (River Information Service). The watercraft identification systems (AIS - Automatic Identification Systems) which are presently used in both sea and inland navigation require purchase and installation of relatively expensive transceivers...
-
Examining Classifiers Applied to Static Hand Gesture Recognition in Novel Sound Mixing System
PublicationThe main objective of the chapter is to present the methodology and results of examining various classifiers (Nearest Neighbor-like algorithm with non-nested generalization (NNge), Naive Bayes, C4.5 (J48), Random Tree, Random Forests, Artificial Neural Networks (Multilayer Perceptron), Support Vector Machine (SVM) used for static gesture recognition. A problem of effective gesture recognition is outlined in the context of the system...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive
PublicationThis paper presents the theoretical analysis and experimental verification of a direct fault harmonic identification approach in a converter-fed electric drive for automated diagnosis purposes. On the basis of the analytical model of the proposed real-time direct fault diagnosis, the fault-related harmonic component is calculated using recursive DFT (RDFT) and Goertzel DFT (GDFT), applied instead of the full spectrum calculations...
-
Sylwester Kaczmarek dr hab. inż.
PeopleSylwester Kaczmarek received his M.Sc in electronics engineering, Ph.D. and D.Sc. in switching and teletraffic science from the Gdansk University of Technology, Gdansk, Poland, in 1972, 1981 and 1994, respectively. His research interests include: IP QoS and GMPLS and SDN networks, switching, QoS routing, teletraffic, multimedia services and quality of services. Currently, his research is focused on developing and applicability...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublicationUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublicationAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Operational Enhancement of Numerical Weather Prediction with Data from Real-time Satellite Images
PublicationNumerical weather prediction (NWP) is a rapidly expanding field of science, which is related to meteorology, remote sensing and computer science. Authors present methods of enhancing WRF EMS (Weather Research and Forecast Environmental Modeling System) weather prediction system using data from satellites equipped with AMSU sensor (Advanced Microwave Sounding Unit). The data is acquired with Department of Geoinformatics’ ground...
-
Using Physiological Signals for Emotion Recognition
PublicationRecognizing user’s emotions is the promising area of research in a field of human-computer interaction. It is possible to recognize emotions using facial expression, audio signals, body poses, gestures etc. but physiological signals are very useful in this field because they are spontaneous and not controllable. In this paper a problem of using physiological signals for emotion recognition is presented. The kinds of physiological...
-
Towards bees detection on images: study of different color models for neural networks
PublicationThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...