Search results for: Molecular descriptors
-
Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction
PublicationMobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection...
-
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublicationDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Application of Multivariate Adaptive Regression Splines (MARSplines) Methodology for Screening of Dicarboxylic Acids Cocrystal Using 1D and 2D Molecular Descriptors
PublicationDicarboxylic acids (DiAs) are probably one of the most popular cocrystals formers. Due to the high hydrophilicity and non-toxicity, they are promising solubilizes of active pharmaceutical ingredients (APIs). Although DiAs appear to be highly capable of forming multicomponent crystals with various compounds, some systems reported in the literature are physical mixtures the solid state without forming stable intermolecular complex....
-
Reversed-Phase TLC and HPLC Retention Data in Correlation Studies with in Silico Molecular Descriptors and Druglikeness Properties of Newly Synthesized Anticonvulsant Succinimide Derivatives
Publication -
Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Hansen Solubility Parameters Based on 1D and 2D Molecular Descriptors Computed from SMILES String
PublicationA new method of Hansen solubility parameters (HSPs) prediction was developed by combining the multivariate adaptive regression splines (MARSplines) methodology with a simple multivariable regression involving 1D and 2D PaDEL molecular descriptors. In order to adopt the MARSplines approach to QSPR/QSAR problems, several optimization procedures were proposed and tested. The effectiveness of the obtained models was checked via standard...
-
Combined computational-experimental approach to predict blood–brain barrier (BBB) permeation based on “green” salting-out thin layer chromatography supported by simple molecular descriptors
Publication -
Fuzzy Divisive Hierarchical Clustering of Solvents According to Their Experimentally and Theoretically Predicted Descriptors
PublicationThe present study describes a simple procedure to separate into patterns of similarity a large group of solvents, 259 in total, presented by 15 specific descriptors (experimentally found and theoretically predicted physicochemical parameters). Solvent data is usually characterized by its high variability, dierent molecular symmetry, and spatial orientation. Methods of chemometrics can usefully be used to extract and explore accurately...
-
Predicting Value of Binding Constants of Organic Ligands to Beta-Cyclodextrin: Application of MARSplines and Descriptors Encoded in SMILES String
PublicationThe quantitative structure–activity relationship (QSPR) model was formulated to quantify values of the binding constant (lnK) of a series of ligands to beta–cyclodextrin (β-CD). For this purpose, the multivariate adaptive regression splines (MARSplines) methodology was adopted with molecular descriptors derived from the simplified molecular input line entry specification (SMILES) strings. This approach allows discovery of regression...
-
Geometry optimization of steroid sulfatase inhibitors - the influence on the free binding energy with STS
PublicationIn the paper we review the application of two techniques (molecular mechanics and quantum mechanics) to study the influence of geometry optimization of the steroid sulfatase inhibitors on the values of descriptors coded their chemical structure and their free binding energy with the STS protein. We selected 22 STS-inhibitors and compared their structures optimized with MM+, PM7 and DFT B3LYP/6–31++G* approaches considering separately...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Retention modeling of some saccharides separated on an amino column.
PublicationUsing an amino column (Supelcosil LC-NH2) and different mixtures of acetonitrile-water, quantitative structure-retention relationship models are discussed. These models are based on computed molecular descriptors representing numerically structured features of some saccharides. The obtained results are underlining the lipophilicity/hydrophilicity balance, and how this is controlling the separation of the saccharides. The resulting...
-
Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
PublicationThe efficiency of micellar solubilization is dictated inter alia by the properties of the solubilizate, the type of surfactant, and environmental conditions of the process. We, therefore, hypothesized that using the descriptors of the aforementioned features we can predict the solubilization efficiency, expressed as molar solubilization ratio (MSR). In other words, we aimed at creating a model to find the optimal surfactant and...
-
In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the Leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions
PublicationIn this study we present prediction models for estimating in silico the cationic hydrophobicity and the cytotoxicity (log [1/EC50]) of ionic liquids (ILs) towards the Leukemia rat cell line (IPC-81), the marine bacterium Vibrio fischeri and the limnic green algae Scenedesmus vacuolatus using linear free energy relationship (LFER) descriptors computed by COSMO calculations. The LFER descriptors used for the prediction model (i.e....
-
Multicomponent ionic liquid CMC prediction
PublicationWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
Selection of effective cocrystals former for dissolution rate improvement of active pharmaceutical ingredients based on lipoaffinity index
PublicationNew theoretical screening procedure was proposed for appropriate selection of potential cocrystal formers possessing the ability of enhancing dissolution rates of drugs. The procedure relies on the training set comprising 102 positive and 17 negative cases of cocrystals found in the literature. Despite the fact that the only available data were of qualitative character, performed statistical analysis using binary classification...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublicationDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Synthesis, Molecular Structure, Anticancer Activity, and QSAR Study of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)Benzenesulfonamide Derivatives
PublicationA series of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamides were synthesized from 4-amino-N-(aryl/heteroaryl)benzenesulfonamides and 2,5-dimethoxytetrahydrofuran. All the synthesized compounds were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. Compound 28, bearing 8-quinolinyl moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines,...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublicationDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents
PublicationSolubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and...
-
User-assisted methodology targeted for building structure interpretable QSPR models for boosting CO2 capture with ionic liquids
PublicationTask-specific ionic liquid (IL) is an emerging class of compounds that may be environmentally friendly. Properly selected, these compounds may be green alternative to amine solutions and can replace them in post-combustion carbon dioxide (CO2) capture processes on an industrial scale. However, owing to the vast diversity of ions and their possible combinations, laboratory research is time consuming and expensive. Therefore, computational...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublicationOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Synthesis, Molecular Structure, Metabolic Stability and QSAR Studies of a Novel Series of Anticancer N-Acylbenzenesulfonamides
PublicationA series of novel N-acyl-4-chloro-5-methyl-2-(R1-methylthio)benzenesulfonamides 18–47 have been synthesized by the reaction of N-[4-chloro-5-methyl-2-(R1-methylthio) benzenesulfonyl]cyanamide potassium salts with appropriate carboxylic acids. Some of them showed anticancer activity toward the human cancer cell lines MCF-7, HCT-116 and HeLa, with the growth percentages (GPs) in the range from 7% to 46%. Quantitative structure-activity relationship...
-
Experimental and theoretical solubility advantage screening of bi-component solid curcumin formulations
PublicationA comprehensive experimental and theoretical screening was performed for identification of curcumin solubilizers. Experimental data led to formulation of a non-linear QSPR model correlating molecular descriptors with measured solubilities. The majority of synthesized binary systems exhibited a moderate enhancement of curcumin solubility, which was found to be the highest in the case of curcumin cocrystallized with pyrogallol. New...
-
New 2-[(4-Amino-6-N-substituted-1,3,5-triazin-2-yl)methylthio]-N-(imidazolidin-2-ylidene)-4-chloro-5-methylbenzenesulfonamide Derivatives, Design, Synthesis and Anticancer Evaluation
PublicationIn the search for new compounds with antitumor activity, new potential anticancer agents were designed as molecular hybrids containing the structures of a triazine ring and a sulfonamide fragment. Applying the synthesis in solution, a base of new sulfonamide derivatives 20–162 was obtained by the reaction of the corresponding esters 11–19 with appropriate biguanide hydrochlorides. The structures of the compounds were confirmed...
-
Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones
PublicationThiazolyl-hydrazones (THs) exhibit a wide spectrum of biological activity that can be enhanced by complexation with various metal ions. Zn(II) complexes with α-pyridine-1,3-TH ligands may represent an alternative to the standard platinum-based chemotherapeutics. In addition, they show photoluminescence properties and thus can be regarded as multifunctional materials. In this study, we synthesized and characterized three neutral...
-
Analysis of the Factors Affecting Static In Vitro Pepsinolysis of Food Proteins
PublicationIn this meta-analysis, we collected 58 publications spanning the last seven decades that reported static in vitro protein gastric digestion results. A number of descriptors of the pepsinolysis process were extracted, including protein type; pepsin activity and concentration; protein concentration; pH; additives; protein form (e.g., ‘native’, ‘emulsion’, ‘gel’, etc.); molecular weight of the protein; treatment; temperature; and...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Diaryl Sulfide Derivatives as Potential Iron Corrosion Inhibitors: A Computational Study
PublicationThe present work aimed to assess six diaryl sulfide derivatives as potential corrosion inhibitors. These derivatives were compared with dapsone (4,4′-diaminodiphenyl sulfone), a common leprosy antibiotic that has been shown to resist the corrosion of mild steel in acidic media with a corrosion efficiency exceeding 90%. Since all the studied compounds possess a common molecular backbone (diphenyl sulfide), dapsone was taken as the...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Mass spectrometry based identification of geometric isomers during metabolic stability study of a new cytotoxic sulfonamide derivatives supported by quantitative structure-retention relationships
PublicationA set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships...
-
QSAR, QSPR and QSRR in Terms of 3-D-MoRSE Descriptors for In Silico Screening of Clofibric Acid Analogues
Publication -
Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility
PublicationSolubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived...
-
Selection of Visual Descriptors for the Purpose of Multi-camera Object Re-identification
PublicationA comparative analysis of various visual descriptors is presented in this chapter. The descriptors utilize many aspects of image data: colour, texture, gradient, and statistical moments. The descriptor list is supplemented with local features calculated in close vicinity of key points found automatically in the image. The goal of the analysis is to find descriptors that are best suited for particular task, i.e. re-identification...
-
Ranking Speech Features for Their Usage in Singing Emotion Classification
PublicationThis paper aims to retrieve speech descriptors that may be useful for the classification of emotions in singing. For this purpose, Mel Frequency Cepstral Coefficients (MFCC) and selected Low-Level MPEG 7 descriptors were calculated based on the RAVDESS dataset. The database contains recordings of emotional speech and singing of professional actors presenting six different emotions. Employing the algorithm of Feature Selection based...
-
Thermal Imaging in Wound Healing Diagnostics
PublicationResults of a project searching for objective, quantitative evaluation of postoperative wound healing in cardiosurgery are presented. We propose simple thermal models of the healing processes after cardiosurgery interventions as objective descriptors allowing classification of patients for extraction and following recovery at home or for prolonged treatment in a hospital. Classification of healing as the normal process or as a process...
-
Parametrization and Correlation Analysis Applied to Music Mood Classification .
PublicationThe paper presents a study on music mood categorization. First, a review of music mood models is presented. Then, the preparation of a set of music excerpts to be used in the experiments and music parametrization is described. Next, some listening tasks performed to obtain mood descriptors are introduced. Finally,the correlation between mood descriptors and features extracted from parameters is discussed. The paper concludes with...
-
The dynamic signature verification using population-based vertical partitioning
PublicationThe dynamic signature is an attribute used in behavioral biometrics for verifying the identity of an individual. This attribute, apart from the shape of the signature, also contains information about the dynamics of the signing process described by the signals which tend to change over time. It is possible to process those signals in order to obtain descriptors of the signature characteristic of an individual user. One of the methods...
-
Multibeam sonar data processing for seafloor characterisation
PublicationThe approach to seafloor characterisation was investigated. It relies on calculation of several descriptors (parameters) related to seabed type using three types of multibeam sonar data obtained during seafloor sensing: 1) the grey-level sonar images of seabed, 2) the 3D model of the seabed surface which consist of (x, y, z) points, 3) the set of time domain echo envelopes corresponding to several beams. The proposed method has...
-
Combined method of multibeam sonar signal processing and image analysis for seafloor classification
PublicationThe combined approach to seafloor characterisation was investigated. It relies on calculation of several descriptors (parameters) related to seabed type using three types of multibeam sonar data obtained during seafloor sensing: 1) the grey-level sonar images (echograms) of seabed, 2) the 3D model of the seabed surface which consists of bathymetric data, 3) the set of time domain bottom echo envelopes received in the consecutive...
-
Comparison of hydrogen bonds and diverse weak interactions of the nitro group in 2-methyl-4-nitroanilinium nitrate, bisulfate and two hexafluoridosilicates: elementary graph-set approach
PublicationCrystal structures of (H2m4na)NO3 (1), (H2m4na)HSO4 (2), (H2m4na)2SiF6 (3) and (H2m4na)2SiF6*2H2O (4), where 2m4na = 2-methyl-4-nitroaniline, are presented. Two layers of interactions occur in the structures, N—H...O/F hydrogen bonds and interactions with the nitro group. Although diverse, hydrogen-bonding patterns are compared with each other by means of interrelations among elementary graph-set descriptors and descriptors of hydrogen-bonding...
-
Examining Feature Vector for Phoneme Recognition / Analiza parametrów w kontekście automatycznej klasyfikacji fonemów
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Distinguishing of cocrystals from simple eutectic mixtures: phenolic acids as potential pharmaceutical coformers
PublicationThe multiparameter model comprising 1D and 2D QSPR/QSAR descriptors was proposed and validated for phenolic acid binary systems. This approach is based on the optimization of regression coefficients for maximization of the percentage of true positives in the pool of systems comprising either simple binary eutectics or cocrystals. The training set consisted of 58 eutectics and 168 cocrystals. The solid dispersions collection used...
-
Examining Feature Vector for Phoneme Recognition
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublicationThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Intermolecular Interactions of Edaravone in Aqueous Solutions of Ethaline and Glyceline Inferred from Experiments and Quantum Chemistry Computations
PublicationEdaravone, acting as a cerebral protective agent, is administered to treat acute brain infarction. Its poor solubility is addressed here by means of optimizing the composition of the aqueous choline chloride (ChCl)-based eutectic solvents prepared with ethylene glycol (EG) or glycerol (GL) in the three different designed solvents compositions. The slurry method was used for spectroscopic solubility determination in temperatures...
-
Utilization of fuzzy rules in computer character animation
PublicationThe chapter presents a method for automatic enhancement of computer character animation utilizing fuzzy inference. First the user designs a prototype version of animation, with keyframes only for important poses, roughly describing the action. Then animation is enriched with new motion phases calculated by the fuzzy inference system using descriptors given by the user. Various degrees of motion fluency and naturalness are possible...
-
Rough Sets Applied to Mood of Music Recognition
PublicationWith the growth of accessible digital music libraries over the past decade, there is a need for research into automated systems for searching, organizing and recommending music. Mood of music is considered as one of the most intuitive criteria for listeners, thus this work is focused on the emotional content of music and its automatic recognition. The research study presented in this work contains an attempt to music emotion recognition...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublicationThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...