Search results for: SUPERCONDUCTING MAGNETIC ENERGY STORAGE
-
Modular power converter with superconducting magnetic energy storage for electric power distribution system — Analysis and simulation
PublicationThis paper describes selected issues concerning realization of energy storage system (ESS) designed to operate in power distribution system. This paper presents a modular approach of 300 kVA power converter operating with superconducting magnetic energy storage (SMES), which gives high dynamics together with high power and suitable capability for instantaneous energy storage. Analysis and simulation studies of selected power converter...
-
Modular power converter topologies for energy storage and electric power distribution systems
PublicationThis paper describes selected issues concerning realization of energy storage system (ESS) designed to operate in power distribution system. In order to achieve scalability of the system a modular approach is proposed. In addition to this different configuration of the system are analyzed, where depending on requirements and application a scalability in power, in energy capacity of energy storage resource and both in power and...
-
Magnetic Field Influence on the Superconducting Transition in Granular (BiPb)-Sr-Ca-Cu-O Superconductors
Publication -
Importance of Specific Heat Characterization when Reporting New Superconductors: An Example of Superconductivity in LiGa2Rh
PublicationWe show that the full-Heusler compound LiGa2Rh is a superconductor with Tc = 2.4 K. The new superconductor was found as a result of an intuition-based extension of a database search for superconductors that looked for the presence of peaks in the electronic band structure near the Fermi energy. The measurement of the entropy loss during the transition from the nonsuperconducting to the superconducting state, a straightforward measurement...
-
Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes
PublicationThe 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual...
-
Superconductivity of Ta-Hf and Ta-Zr alloys: Potential alloys for use in superconducting devices
PublicationThe electronic properties relevant to superconductivity are reported for bulk Ta-Hf and Ta-Zr body centered cubic alloys, in a large part to determine whether their properties are suitable for potential use in superconducting qbits. The body centered cubic unit cell sizes increase with increasing alloying. The results of magnetic susceptibility, electrical resistivity, and heat capacity characterization are reported. While elemental...
-
Superconducting properties of vn-sio 2 sol-gel derived thin films
Publicationin this work studies of structure and superconducting properties of vnsio2 films are reported. the films were obtained through thermal nitridation (ammonolysis) of solgel derived v2o3sio2 coatings (in a proper v2o3/sio2 ratio) at 1200 ◦c. this process leads to the formation of disordered structure with vn metallic grains dispersed in the insulating sio2 matrix. the structural transformations occurring in the lms as a result...
-
Improved finite element method for flow, heat and solute transport of Prandtl liquid via heated plate
PublicationIn the current study, a vertical, 3D-heated plate is used to replicate the generation of heat energy and concentration into Prandtl liquid. We discuss how Dufour and Soret theories relate to the equations for concentration and energy. In order to see how efectively particles, interact with heat and a solvent, hybrid nanoparticles are used. It does away with the phenomena of viscous dissipation and changing magnetic felds. The motivation...
-
MgPd2Sb : A Mg-based Heusler-type superconductor
PublicationWe report the synthesis and physical properties of a full Heusler compound, MgPd2Sb, which we found toshow superconductivity belowTc=2.2K. MgPd2Sb was obtained by a two-step solid-state reaction methodand its purity and cubic crystal structure [Fm-3m,a=6.4523(1) Å] were confirmed by powder x-ray diffrac-tion. Normal and superconducting states were studied by electrical resistivity, magnetic susceptibility, andheat...
-
Superconductivity on a Bi Square Net in LiBi
PublicationWe present the crystallographic analysis, superconducting characterization and theoretical modeling of LiBi, that contains the lightest and the heaviest nonradioactive metal. The compound crystallizes in a tetragonal (CuAu-type) crystal structure with Bi square nets separated by Li planes (parameters a = 3.3636(1)Å and c = 4.2459(2) Å, c/a = 1.26). Superconducting state was studied in detail by magnetic susceptibility and heat...
-
Detection of inter-turn faults in transformer winding using the capacitor discharge method
PublicationThe paper presents results of an analysis of inter-turn fault effects on the voltage and current waveforms of a capacitor discharge through transformer windings. The research was conducted in the frame of the Facility of Antiproton and Ion Research project which goal is to build a new international accelerator facility that utilizes superconducting magnets. For the sake of electrical quality assurance of the superconducting magnet...
-
Physical properties and electronic structure of La3Co and La3Ni intermetallic superconductors
PublicationLa3Co and La3Ni are reported superconductors with transition temperatures of 4.5 and 6 K, respectively. Here, we reinvestigate the physical properties of these two intermetallic compounds with magnetic susceptibility χ, specific heat Cp and electrical resistivity ρ measurements down to 1.9 K. Although bulk superconductivity is confirmed in La3Co, as observed previously, only a trace of it is found in La3Ni, indicating that the...
-
TaRh 2 B 2 and NbRh 2 B 2 : Superconductors with a chiral noncentrosymmetric crystal structure
PublicationIt is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials—even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties...
-
Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO
PublicationX-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of...
-
Superconductivity and itinerant ferromagnetism of Y9Co7 probed by ac susceptibility
PublicationThe ac magnetic susceptibility of a single crystal sample of the compound Y9Co7 has been measured in applied dc fields ranging from 0–6.7 kOe by utilizing a tunnel diode resonator circuit. In agreement with previous measurements on this material, a superconducting transition has been observed to occur at TSC ≈ 2.5 K. A broad maximum has been observed in the zero field susceptibility measurements from 2.5 K < T < 8 K and its behavior...
-
Superconductivity in the intermetallic compound Zr5Al4
PublicationPolycrystalline Zr5Al4 was synthesized using the arc-melting method. Powder X-ray diffraction confirms the previously reported crystal structure of the Ti5Ga4-type P63/mcm with lattice parameters: a = 8.4312(6) A , and c = 5.7752(8) A . Electrical resistivity and low-temperature magnetic susceptibility measurements indicate that Zr5Al4 exhibits superconducting behavior below 2 K. The normalized heat capacity jump at Tc= 1.82 K...
-
Ewa Klugmann-Radziemska prof. dr hab.
PeopleEwa Klugmann-Radziemska graduated from the University of Gdansk with a degree in physics, and since 1996 has been associated with the Gdansk University of Technology, when she began PhD studies. Currently, he is a professor at the Faculty of Chemistry at the Gdansk University of Technology, since 2006 head of the Department of Chemical Apparatus and Machinery. In the years 2008–2016 she was the Vice-Dean for cooperation and development,...
-
Enhancement of the Magnetic Coupling in Exfoliated CrCl 3 Crystals Observed by Low‐Temperature Magnetic Force Microscopy and X‐ray Magnetic Circular Dichroism
PublicationMagnetic crystals formed by 2D layers interacting by weak van der Waals forces are currently a hot research topic. When these crystals are thinned to nanometric size, they can manifest strikingly different magnetic behavior compared to the bulk form. This can be the result of, for example, quantum electronic confinement effects, the presence of defects, or pinning of the crystallographic structure in metastable phases induced by...
-
NbIr 2 B 2 and TaIr 2 B 2 – New Low Symmetry Noncentrosymmetric Superconductors with Strong Spin–Orbit Coupling
PublicationSuperconductivity was first observed more than a century ago, but the search for new superconducting materials remains a challenge. The Cooper pairs in superconductors are ideal embodiments of quantum entanglement. Thus, novel superconductors can be critical for both learning about electronic systems in condensed matter and for possible application in future quantum technologies. Here two previously unreported materials, NbIr2B2...
-
CeIr3: superconductivity in a phase based on tetragonally close packed clusters
PublicationWe present the crystallographic analysis, superconducting and spectroscopic characterization, and theoretical modeling of CeIr3. Lattice parameters a = 5.2945(1) Å and c = 26.219(1) Å are found for the R-3m symmetry crystal structure, which are close to the literature values. CeIr3 is a moderate type-II superconductor (κ GL = 17, λ e–p = 0.65) below 2.5 K. Ce ions exhibit a strongly intermediate valence character as evidenced by...
-
Superconductivity in the Nb-Ru-Ge σ phase
PublicationWe show that the previously unreported ternary σ-phase material Nb20.4Ru5.7Ge3.9 (Nb0.68Ru0.19Ge0.13) is a superconductor with a critical temperature of 2.2 K. Temperature-dependent magnetic susceptibility, resistance, and specific-heat measurements were used to characterize the superconducting transition. The Sommerfeld constant γ for Nb20.4Ru5.7Ge3.9 is 91 mJ mol f.u. −1K−2 (∼3 mJ mol atom−1 K−2) and the specific-heat anomaly at...
-
Iridium 5d -electron driven superconductivity in ThIr3
PublicationA polycrystalline sample of superconducting ThI r 3 was obtained by arc-melting Th and Ir metals. Powder x-ray diffraction revealed that the compound crystalizes in a rhombohedral crystal structure (R-3m, s.g. #166) with the lattice parameters: a = 5.3394 ( 1 ) Å and c = 26.4228 ( 8 ) Å . Normal and superconducting states were studied by magnetic susceptibility, electrical resistivity, and heat capacity measurements. The results...
-
Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics
PublicationThe seminal Navier-Stokes equations were stated even before the creation of the foundations of thermodynamics and its first and second laws. There is a widespread opinion in the literature on thermodynamic cycles that the Navier-Stokes equations cannot be taken as a thermodynamically correct model of a local "working fluid", which would be able to describe the conversion of "heating" into "working" (Carnot's type cycles) and vice...
-
FURTHER REMARKS ON THE NEO-CLASSICAL NAVIER-STOKES EQUATIONS
PublicationThe seminal Navier-Stokes equations have been stated yet before creation of principles of thermodynamics and the first and second laws. In the literature there is the common opinion that the Navier-Stokes equations cannot be taken as a thermodynamically correct model of “working fluid” which is able to describe transformation of “ heat” into “work” and vice versa. Therefore, in the paper, a new exposition of thermodynamically...
-
Superconductivity in PrBa 2Cu 3O 7− δ single crystals after high-temperature thermal treatment
PublicationThe influence of post-growth treatment, consisting of high-temperature reduction, quench and oxidation, on the structural, electrical and magnetic properties of PrBa2Cu3O7−δ single crystals, obtained in Al2O3 and ZrO2 crucibles by the self-flux method, was examined. We report on the observation of inhomogeneous superconductivity in several Al-doped crystals from the ac magnetic susceptibility and resistivity measurements. Superconducting...
-
Ferromagnetism in Pr-rich binary Pr7Ru3 intermetallic compound
PublicationWe present the synthesis and experimental characterization of the binary intermetallic compound Pr7Ru3. The polycrystalline sample was prepared by arc melting pure Pr and Ru, followed by homogenization at 500 °C and 600 °C for 48 and 89 h, respectively. Powder x-ray diffraction confirms that Pr7Ru3 crystallizes in an orthorhombic crystal structure (Pnma, space group no. 62) with the lattice parameters: a = 7.3606(7) Å, b = 23.120(1)...
-
Growth, Crystal Structure and Magnetic Characterization of Zn-Stabilized CePtIn4
PublicationThe growth and characterization of CePtIn4, stabilized by 10% Zn substitution for In, is reported. The new material is orthorhombic, space group Cmcm (No. 63), with lattice parameters a = 4.51751(4) Å, b = 16.7570(2) Å, and c = 7.36682(8) Å, and the refined crystal composition has 10% of Zn substituted for In, i.e., the crystals are CePt(In0.9Zn0.1)4. Crystals were grown using a self-flux method: only growths containing Zn yielded...
-
The σ-phase superconductors Nb20.4Rh5.7Ge3.9 and Nb20.4Rh5.7Si3.9
PublicationWe show that the previously unreported ternary σ phases Nb20.4Rh5.7Ge3.9 and Nb20.4Rh5.7Si3.9 are both superconductors with Tc values of approximately 1.9 K. The superconducting transitions were characterized through temperature-dependent magnetic susceptibility, electrical resistance, and specific heat measurements. The Sommerfeld constants, γ, for Nb20.4Rh5.7Ge3.9 and Nb20.4Rh5.7Si3.9 are 89(1) mJ mol-f.u.−1K−2 and 86(1) mJ mol-f.u.−1K−2...
-
Superconductivity in the superhard boride WB4.2
PublicationWe show that the superhard boride WB4.2 is a superconductor with a Tc of 2.05(5) K. Temperature-dependent magnetic susceptibility, electrical resistivity, and specific heat measurements were used to characterize the superconducting transition. The Sommerfeld constant γ for WB4.2 is 2.07(3) mJ mol−1 K−2 and the ΔC/γTc=1.56, which is somewhat higher than what is expected for weakly coupled Bardeen–Cooper–Schrieffer type superconductors....
-
Noncentrosymmetric superconductor with a bulk three-dimensional Dirac cone gapped by strong spin-orbit coupling
PublicationThe layered, noncentrosymmetric heavy element PbTaSe2 is found to be superconducting. We report its electronic properties accompanied by electronic-structure calculations. Specific heat, electrical resistivity, and magnetic-susceptibility measurements indicate that PbTaSe2 is a moderately coupled, type-IIBCSsuperconductor (Tc = 3.72 K, Ginzburg–Landau parameter κ = 17) with an electron-phonon coupling constant of λep = 0.74. Electronic-structure...
-
Superconductivity and appearance of negative magnetocaloric effect in Ba1–xKxBiO3 perovskites, doped by Y, La and Pr
PublicationRecently, substantial attention is given to the bismuth-based perovskites for variety of electronic applications. The perovskites are used for quantum dots displays (QLED), photovoltaic systems and superconducting (HTS) devices. In this paper comprehensive studies of Ba1–xKxBi1–yREyO3 bismuth perovskites (REBKBO, RE = Y , La or Pr) are reported. Apart from structural anomalous behavior at low temperatures, the electronic properties...
-
Site-selective magnetic order of neptunium inNp2Ni17
PublicationWe present the results obtained by superconducting quantum interference device (SQUID) magnetometry, specific heat, and Mossbauer spectroscopy measurements carried out on Np2Ni17 polycrystalline samples. We show that long-range magnetic order, with a moment mu((2b)) similar to 2.25 mu(B), occurs below T-N = 17.5 K on the Np (2b) sites. A nontrivial situation is observed in that the other Np sites (2d) do not take part to the order...
-
Thermodynamic analysis of the Compressed Air Energy Storage system coupled with the Underground Thermal Energy Storage
PublicationImprovement of flexibility is one of the key challenges for the transformation of the Polish Power System aiming at a high share of renewable energy in electricity generation. Flexible and dispatchable power plants will contribute to this ongoing transformation process as they compensate for fluctuations in electricity generation from renewable energy sources such as wind and photovoltaics. In this context, CAES storage tanks are...
-
Comparison of Cadmium Cd2+ and Lead Pb2+ Binding by Fe2O3@SiO2‐EDTA Nanoparticles – Binding Stability and Kinetic Studies
PublicationThis study describes the synthesis and characterization of ethylenediaminetetraacetic acid (EDTA) functionalized magnetic nanoparticles of 20 nm in size – Fe3O4@SiO2‐EDTA – which were used as a novel magnetic adsorbent for Cd(II) and Pb(II) binding in aqueous medium. These nanoparticles were obtained in two‐stage synthesis: covering by tetraethyl orthosilicate and functionalization with EDTA derivatives. Nanoparticles were characterized...
-
Rattling-enhanced superconductivity in MV2Al20 (M = Sc, Lu, Y) intermetallic cage compounds
PublicationPolycrystalline samples of four intermetallic compounds: MV2Al20 (M=Sc, Y, La, and Lu) were synthesized using an arc-melting technique. The crystal structures were analyzed by means of powder x-ray diffraction and Rietveld analysis, and the physical properties were studied by means of heat capacity, electrical resistivity, and magnetic susceptibility measurements down to 0.4 K. For ScV2Al20, LuV2Al20, and YV2Al20, superconductivity...
-
Superconductivity in a new intermetallic structure type based on endohedral Ta@Ir7Ge4 clusters
PublicationWe report the observation of superconductivity at a temperature near 3.5 K for the previously unreported compound TaIr2Ge2. In addition to being a superconductor, this material displays a new crystal structure type that contains endohedral clusters, as determined by single-crystal x-ray diffraction structure refinement; the structure is more complex than those of the commonly observed tetragonal 122 intermetallic phases. Despite...
-
Quasi-one-dimensional exchange interactions and short-range magnetic correlations in CuTeO4
PublicationCuTeO4 has been proposed as a crystallographically distinct, yet electronic structure analog, of the superconducting cuprates. Here, we present a detailed characterization of the physical properties of CuTeO4 to address this proposal. Fitting of magnetic susceptibility data indicates unexpected quasi-one-dimensional, antiferromagnetic correlations at high temperature, with a nearest-neighbor Heisenberg exchange of 1=164(5) K....
-
Energy Storage
Journals -
Support Materials of Organic and Inorganic Origin as Platforms for Horseradish Peroxidase Immobilization: Comparison Study for High Stability and Activity Recovery
PublicationIn the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained...
-
Piotr Jasiński prof. dr hab. inż.
PeoplePiotr Jasinski obtained MSc in electronics in 1992 from the Gdansk University of Technology (GUT), Poland. Working at GUT, he received PhD in 2000 and DSc in 2009. Between 2001 and 2004 Post Doctoral Fellow at Missouri University of Science and Technology, while between 2008 and 2010 an Assistant Research Professor. Currently is an Associate Professor at Gdansk University of Technology working in the field of electronics, biomedical...
-
Time reversal invariant single-gap superconductivity with upper critical field larger than the Pauli limit in NbIr2B2
PublicationRecently, compounds with noncentrosymmetric crystal structure have attracted much attention for providing a rich playground in search for unconventional superconductivity. NbIr2B2 is a new member to this class of materials harboring superconductivity below Tc = 7.3(2) K and a very high upper critical field that exceeds Pauli limit. Here we report on muon spin rotation (μSR) experiments probing the temperature and field dependence...
-
Polaronic and Mott insulating phase of layered magnetic vanadium trihalide VCl3
PublicationTwo-dimensional (2D) van der Waals (vdW) magnetic 3d-transition metal trihalides are a new class of functional materials showing exotic physical properties useful for spintronic and memory storage applications. In this article, we report the synthesis and electromagnetic characterization of single-crystalline vanadium trichloride, VCl 3 , a novel 2D layered vdW Mott insulator, which has a rhombohedral structure (R3, No. 148) at...
-
ENERGY STORAGE IN COMPRESSED AIR – SOLUTION SUPPORTING RENEWABLE ENERGY SOURCES
PublicationThis article presents a brief description of a power system, the current national power system daily load, the use of wind power as a renewable energy source and its share in the national load. It also discusses the methods for storing energy, their characteristics and possible solutions. The power storage and generation solution proposed in the article is based on the collaboration between a gas turbine and an air storage system....
-
Reliable renewable energy – application of electrochemical capacitors for electrical energy storage
PublicationThis paper presents electrical energy storage devices such as electrochemical capacitors, their principle of operation and electrode materials most commonly used in their manufacturing technology. Moreover, our research on development of new nanocomposite materials based on multi-walled carbon nanotubes and conducting polymer is shown. Additionally, the possibility and advantages of application of supercapacitors for accumulation...
-
Materials for energy storage devices
e-Learning CoursesKurs dotyczy zagadnień inżynierii materiałowej, elektrochemii, fizykochemii nanotechnologii materiałów stosowanych w budowaniu urządzeń elektrochemicznych do magazynowania i konwersji energii w urządzeniach. Prowadzony jest w języku angielskim.
-
Simulation of the Dynamics of Renewable Energy Sources with Energy Storage Systems
PublicationThe intermittency of renewable energy sources (RES) constitutes a challenge for effective power system control. Fossil-fuel-based units offering ancillary power services to meet the short-term power imbalance are a financial and environmental burden for the society. Energy storage systems (ESS) can be the solution in view of the electricity market development and growing environmental concern. The major questions are, in what circumstances...
-
GRAPHENE-BASED SUPERCAPACITORS APPLICATION FOR ENERGY STORAGE
PublicationRecent advances in graphene-based supercapacitor technology for energy storage application were summarized. The comparison of different types of electrode materials in such supercapacitors was performed. The supercapacitors with graphene-based electrodes exhibit outstanding performance: high charge-discharge rate, high power density, high energy density and long cycle-life, what makes them suitable for various applications, e.g....
-
CAES – Energy storage providing stability for national power system
PublicationThis paper presents a short characteristics of the power system. It also describes various types of energy storage technologies. The suggested solution of accumulation and generation of electric power is based on the cooperation of gas turbine with Compressed Air Storage Energy systems – CAES. This analysis describes also various types of cooperation of CAES and renewable sources of energy, particularly wind power systems.
-
Superconductivity in LiGa2Ir Heusler type compound with VEC = 16
PublicationPolycrystalline LiGa2Ir has been prepared by a solid state reaction method. A Rietveld refnement of powder x-ray difraction data confrms a previously reported Heusler-type crystal structure (space group Fm-3m, No. 225) with lattice parameter a= 6.0322(1) Å. The normal and superconducting state properties were studied by magnetic susceptibility, heat capacity, and electrical resistivity techniques. A bulk superconductivity with...
-
AC-DC-DC Converter for Small Power Energy Storage Systems
PublicationThe energy transformation driven by the development of renewable energy sources has become a reality for all power grid users. Prosumer energy, primarily utilizing photovoltaic installations, is one of the fastest-growing market segments. The advancement of technology, a decrease in electrochemical energy storage prices, and changes in the legal framework governing energy billing for grid-fed power have led to a growing interest...