Filters
total: 965
-
Catalog
Search results for: TELEMEDICINE, DEEP LEARNING, MULTIMEDIA DATABASES, BIG DATA
-
Olgun Aydin dr
PeopleOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Olgun Aydin Dr
PeopleOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublicationIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
On the impact of Big Data and Cloud Computing on a scalable multimedia archiving system
PublicationMultimedia Archiver (MA) is a system build upon the promise and fascination of the possibilities emerging from cloud computing and big data. We aim to present and describe how the Multimedia Archiving system works for us to record, put in context and allow a swift access to large amounts of data. We introduce the architecture, identified goals and needs taken into account while designing a system processing data with Big Data...
-
Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City
PublicationData from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...
-
BIG PROBLEMS WITH BIG DATA
PublicationThe article presents an overview of the most important issues related to the phenomenon called big data. The characteristics of big data concerning the data itself and the data sources are presented. Then, the big data life cycle concept is formulated. The next sections focus on two big data technologies: MapReduce for big data processing and NoSQL databases for big data storage.
-
Big Data i 5V – nowe wyzwania w świecie danych (Big Data and 5V – New Challenges in the World of Data)
PublicationRodzaje danych, składające się na zbiory typu Big Data, to m.in. dane generowane przez użytkowników portali internetowych, dane opisujące transakcje dokonywane poprzez Internet, dane naukowe (biologiczne, astronomiczne, pomiary fizyczne itp.), dane generowane przez roboty w wyniku automatycznego przeszukiwania przez nie Internetu (Web mining, Web crawling), dane grafowe obrazujące powiązania pomiędzy stronami WWW itd. Zazwyczaj,...
-
Review of the Complexity of Managing Big Data of the Internet of Things
PublicationTere is a growing awareness that the complexity of managing Big Data is one of the main challenges in the developing feld of the Internet of Tings (IoT). Complexity arises from several aspects of the Big Data life cycle, such as gathering data, storing them onto cloud servers, cleaning and integrating the data, a process involving the last advances in ontologies, such as Extensible Markup Language (XML) and Resource Description...
-
Data augmentation for improving deep learning in image classification problem
PublicationThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Deep Learning Basics 2023/24
e-Learning CoursesA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Deep Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Databases (Data Engineering) - 2022
e-Learning CoursesThe course comprises basic and selected advanced issues of modern relational databases, including modelling, implementing and querying databases. It also refers to such important topics as normalization and transactional processing. The course is a necessary prerequisite to the Data Warehouses course.
-
Databases (Data Engineering) - 2023
e-Learning CoursesThe course comprises basic and selected advanced issues of modern relational databases, including modelling, implementing and querying databases. It also refers to such important topics as normalization and transactional processing. The course is a necessary prerequisite to the Data Warehouses course.
-
Databases (Data Engineering) - 2024
e-Learning CoursesThe course comprises basic and selected advanced issues of modern relational databases, including modelling, implementing and querying databases. It also refers to such important topics as normalization and transactional processing. The course is a necessary prerequisite to the Data Warehouses course.
-
Harmony Search for Data Mining with Big Data
PublicationIn this paper, some harmony search algorithms have been proposed for data mining with big data. Three areas of big data processing have been studied to apply new metaheuristics. The first problem is related to MapReduce architecture that can be supported by a team of harmony search agents in grid infrastructure. The second dilemma involves development of harmony search in preprocessing of data series before data mining. Moreover,...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublicationIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
English Language Learning Employing Developments in Multimedia IS
PublicationIn the realm of the development of information systems related to education, integrating multimedia technologies offers novel ways to enhance foreign language learning. This study investigates audio-video processing methods that leverage real-time speech rate adjustment and dynamic captioning to support English language acquisition. Through a mixed-methods analysis involving participants from a language school, we explore the impact...
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Big Data in Regenerative Urban Design
PublicationWhy the use of Big Data in regenerative planning matters? The aim of this chapter is to study under what conditions Big Data can be integrated into regenerative design and sustainable planning? Authors seek to answer how – when related to the ecosystem and to human activities – Big Data can be used to: • both shape policies that support the development of regenerative human settlements, • support restorative design for practitioners...
-
Deep neural networks for data analysis
e-Learning CoursesThe aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...
-
The Use of Big Data in Regenerative Planning
PublicationWith the increasing significance of Big Data sources and their reliability for studying current urban development processes, new possibilities have appeared for analyzing the urban planning of contemporary cities. At the same time, the new urban development paradigm related to regenerative sustainability requires a new approach and hence a better understanding of the processes changing cities today, which will allow more efficient...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublicationThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
Big Data Analytics for ICT Monitoring and Development
PublicationThe expanded growth of information and communication technology has opened new era of digitization which is proving to be a great challenge for researchers and scientists around the globe. The utmost paradigm is to handle and process the explosion of data with minimal cost and discover relevant hidden information in the least amount of time. The buzz word “BIG DATA” is a widely anticipated term with the potential to handle heterogeneous,...
-
Deep learning in the fog
PublicationIn the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...
-
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublicationHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Neural networks and deep learning
PublicationIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Machine Learning and data mining tools applied for databases of low number of records
Publication -
Analiza danych typu Big Data 2022/23
e-Learning CoursesThe aim of the course is to familiarize students with the methods of storing and analysis of big data. Practical tools for these tasks are presented.
-
Query by Shape for Image Retrieval from Multimedia Databases
Publication -
How ethics combine with big data: a bibliometric analysis
PublicationThe term Big Data is becoming increasingly widespread throughout the world, and its use is no longer limited to the IT industry, quantitative scientific research, and entrepreneurship, but entered as well everyday media and conversations. The prevalence of Big Data is simply a result of its usefulness in searching, downloading, collecting and processing massive datasets. It is therefore not surprising that the number of scientific...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep Learning w Keras
e-Learning CoursesKurs przeznaczony dla słuchaczy studiów podyplomowych Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu praktycznym - edycja biznesowa.
-
Analiza danych typu Big Data 2024/25
e-Learning CoursesThe aim of the course is to familiarize students with the methods of acquiring, storing, and analyzing big data. Practical tools for these tasks are presented.
-
Rediscovering Automatic Detection of Stuttering and Its Subclasses through Machine Learning—The Impact of Changing Deep Model Architecture and Amount of Data in the Training Set
PublicationThis work deals with automatically detecting stuttering and its subclasses. An effective classification of stuttering along with its subclasses could find wide application in determining the severity of stuttering by speech therapists, preliminary patient diagnosis, and enabling communication with the previously mentioned voice assistants. The first part of this work provides an overview of examples of classical and deep learning...
-
Music Data Processing and Mining in Large Databases for Active Media
PublicationThe aim of this paper was to investigate the problem of music data processing and mining in large databases. Tests were performed on a large data-base that included approximately 30000 audio files divided into 11 classes cor-responding to music genres with different cardinalities. Every audio file was de-scribed by a 173-element feature vector. To reduce the dimensionality of data the Principal Component Analysis (PCA) with variable...
-
Magdalena Szuflita-Żurawska
PeopleHead of the Scientific and Technical Information Services at the Gdansk University of Technology Library and the Leader of the Open Science Competence Center. She is also a Plenipotentiary of the Rector of the Gdańsk University of Technology for open science. She is a PhD Candidate. Her main areas of research and interests include research productivity, motivation, management of HEs, Open Access, Open Research Data, information...
-
Big Data
Journals -
Deep neural networks for data analysis 24/25
e-Learning CoursesThis course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...
-
Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
PublicationIn this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
The System of the Supervision and the Visualization of Multimedia Data for BG
PublicationMonitoring of country maritime border is an important task of the Border Guard. This task can be facilitated with the use of the technology enabling gathering information from distributed sources and its supervision and visualization. The system presented in the paper is an extension and enhancement of the previously developed distributed system map data exchange system. The added functionalities allow supplementation of map data...
-
Analiza danych typu Big Data 2023/24 KOPIA
e-Learning CoursesThe aim of the course is to familiarize students with the methods of storing and analysis of big data. Practical tools for these tasks are presented.
-
Artysta i analityk. Big data w przestrzeni kultury
PublicationTekst rozważa rolę Big Data - ogromnych zbiorów danych - w badaniu kultury oraz w jej tworzeniu. Przedmiotem analiz jest również wpływ tej technologii na twórczość artystyczną, w tym na współczesną architekturę i urbanistykę. Przedstawione zostały scenariusze potencjalnej przyszłej roli Big Data w społeczeństwie.
-
Big Data and the Internet of Things in Edge Computing for Smart City
PublicationRequests expressing collective human expectations and outcomes from city service tasks can be partially satisfied by processing Big Data provided to a city cloud via the Internet of Things. To improve the efficiency of the city clouds an edge computing has been introduced regarding Big Data mining. This intelligent and efficient distributed system can be developed for citizens that are supposed to be informed and educated by the...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublicationBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Big Data Processing by Volunteer Computing Supported by Intelligent Agents
PublicationIn this paper, volunteer computing systems have been proposed for big data processing. Moreover, intelligent agents have been developed to efficiency improvement of a grid middleware layer. In consequence, an intelligent volunteer grid has been equipped with agents that belong to five sets. The first one consists of some user tasks. Furthermore, two kinds of semi-intelligent tasks have been introduced to implement a middleware...
-
A Mammography Data Management Application for Federated Learning
PublicationThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publication -
Big Data 2023
e-Learning Courses -
Collective citizens' behavior modelling with support of the Internet of Things and Big Data
PublicationIn this paper, collective human behaviors are modelled by a development of Big Data mining related to the Internet of Things. Some studies under MapReduce architectures have been carried out to improve an efficiency of Big Data mining. Intelligent agents in data mining have been analyzed for smart city systems, as well as data mining has been described by genetic programming. Furthermore, artificial neural networks have been discussed...