Department of Theoretical Physics and Quantum Information - Administrative Units - Bridge of Knowledge

Search

Department of Theoretical Physics and Quantum Information

Filters

total: 402

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Publications

Year 2006
Year 2014
Year 2011
Year 2003
Year 2021
  • Roadmap on dynamics of molecules and clusters in the gas phase
    Publication
    • H. Zettergren
    • A. Domaracka
    • T. Schlathölter
    • P. Bolognesi
    • S. Díaz-Tendero
    • M. Łabuda
    • S. Tosic
    • S. Maclot
    • P. Johnsson
    • A. Steber... and 34 others

    - EUROPEAN PHYSICAL JOURNAL D - Year 2021

    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty orders of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity...

    Full text available to download

  • Two-photon microperimetry with picosecond pulses
    Publication

    - Biomedical Optics Express - Year 2021

    Two-photon vision is a phenomenon associated with the perception of short pulsesof near-infrared radiation (900-1200 nm) as a visible light. It is caused by the nonlinear processof two-photon absorption by visual pigments. Here we present results showing the influence ofpulse duration and repetition rate of short pulsed lasers on the visual threshold. We comparedtwo-photon sensitivity maps of the retina obtained for subjects with...

    Full text available to download

Year 2002
Year 2020
Year 2007
Year 2012
Year 2013
Year 2016
  • Sharp transitions in low-number quantum dots Bayesian magnetometry
    Publication

    - Scientific Reports - Year 2016

    We consider Bayesian estimate of static magnetic field, characterized by a prior Gaussian probability distribution, in systems of a few electron quantum dot spins interacting with infinite temperature spin environment via hyperfine interaction. Sudden transitions among optimal states and measurements are observed. Usefulness of measuring occupation levels is shown for all times of the evolution, together with the role of entanglement...

    Full text available to download

  • Standing Waves in a Rectangular Resonator Containing Acoustically Active Gases
    Publication

    The distribution of perturbations of pressure and velocity in a rectangular resonator is considered. A resonator contains a gas where thermodynamic processes take place, such as exothermic chemical reaction or excitation of vibrational degrees of a molecule’s freedom. These processes make the gas acoustically active under some conditions. We conclude that the incident and reflected compounds of a sound beam do not interact in the...

    Full text available to download

  • Synthesis and characterization of ruthenium and rhenium dyes with phosphonate anchoring groups
    Publication

    - DALTON TRANSACTIONS - Year 2016

    Re(L1)–Re(L3), a series of rhenium(I) tricarbonyl chloride complexes with bpy-R2 derivatives L1–L3 (bpy = 2,2′-bipyridine, R represents the substitution at the 4- and 4′-positions), and their corresponding trishomoleptic Ru(L1)3–Ru(L3)3 as well as heteroleptic ruthenium(II) complexes Ru(tbbpy)2(L1) and Ru(tbbpy)2(L2) have been synthesized and characterized. Their applicability as immobilizable metal–organic chromophores in solar...

    Full text to download in external service

  • The symmetric extendibility of quantum states

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement...

    Full text to download in external service

  • Wavepacket of the Universe and its Spreading
    Publication

    Wavepackets in quantum mechanics spread and the Universe in cosmology expands. We discuss a formalism where the two effects can be unified. The basic assumption is that the Universe is determined by a unitarily evolving wavepacket defined on space-time. Space-time is static but the Universe is dynamic. Spreading analogous to expansion known from observational cosmology is obtained if one regards time evolution as a dynamical process...

    Full text available to download

Year 2018
Year 2009
Year 2017
  • Standing Waves in One-Dimensional Resonator Contaning an Ideal Isothermal Gas Affected by the Constant Mass Force
    Publication

    The study is devoted to standing acoustic waves in one-dimensional planar resonator which containing an ideal gas. A gas is affected by the constant mass force. Two types of physically justified boundary conditions are considered: zero velocity or zero excess pressure at both boundaries. The variety of nodal and antinodal points is determined. The conclusion is that the nodes of pressure and antinodes of velocity do not longer...

    Full text available to download

  • Structure of the Resource Theory of Quantum Coherence
    Publication
    • A. Streltsov
    • S. Rana
    • P. Boes
    • R. Eisert

    - PHYSICAL REVIEW LETTERS - Year 2017

    Quantum coherence is an essential feature of quantum mechanics which is responsible for the departure between the classical and quantum world. The recently established resource theory of quantum coherence studies possible quantum technological applications of quantum coherence, and limitations that arise if one is lacking the ability to establish superpositions. An important open problem in this context is a simple characterization...

    Full text to download in external service

  • Superadditivity of two quantum information resources
    Publication

    - Science Advances - Year 2017

    Entanglement is one of the most puzzling features of quantum theory and a principal resource for quantum information processing. It is well known that in classical information theory, the addition of two classical information resources will not lead to any extra advantages. On the contrary, in quantum information, a spectacular phenomenon of the superadditivity of two quantum information resources emerges. It shows that quantum...

    Full text available to download

  • Teoretyczne badanie struktury oscylacyjno-elektronowej cząsteczki NaRb z uwzględnieniem efektów relatywistycznych
    Publication

    - Year 2017

    Z wykorzystaniem kwantowo-chemicznych metod opartych na pseudopotencjałach opisujących oddziaływanie elektronów walencyjnych z atomowymi rdzeniami zostały policzone krzywe adiabatyczne energii potencjalnej. Na ich podstawie wyznaczono parametry spektroskopowe cząsteczki NaRb w ujęciu nierelatywistycznym i relatywistycznym. Policzyłem osiemnaście stanów nierelatywistycznych w symetrii Σ+, dziesięć stanów symetrii Π oraz cztery stany...

    Full text available to download

  • The POCOBIO Database for Computed Scattering Cross-Sections for Positron Collisions with Biomolecular Systems
    Publication

    The design of a database for positron interactions with biomolecular systems is outlined. The database contains only scattering cross sections, which are derived from theory. The data model is defined in a very flexible way, which facilitates the usage of weakly bound clusters of molecules and molecular systems with many tautomeric forms.

    Full text available to download

  • Theoretical Assessment of Excited State Gradients and Resonance Raman Intensities for the Azobenzene Molecule

    The ground state geometries and vibrational frequencies as well as the excitation energies and excited state gradients of the S 1(nπ*) and S 2(ππ * ) states of trans - and cis -azobenzene are investigated by several DFT methods, namely B3LYP, PBE, M06-2X, CAM-B3LYP, and ω B97X. Excited state properties and in particular gradients are also assessed using the wave function based methods EOM-CCSD and RASPT2/RASSCF. Comparison with...

    Full text available to download

  • Towards Resource Theory of Coherence in Distributed Scenarios
    Publication

    - Physical Review X - Year 2017

    The search for a simple description of fundamental physical processes is an important part of quantum theory. One example for such an abstraction can be found in the distance lab paradigm: if two separated parties are connected via a classical channel, it is notoriously difficult to characterize all possible operations these parties can perform. This class of operations is widely known as local operations and classical communication....

    Full text available to download

Year 2019
Year 2010
  • Sudden death of effective entanglement
    Publication

    - PHYSICAL REVIEW A - Year 2010

    Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyze the effective entanglement (i.e., entanglement minimized over the output data). We show that in the well-defined system of two quantum dots monitored by single-electron transistors, one may observe a sudden death of effective entanglement when...

    Full text available to download

  • Two-photon double ionization of atoms in attosecond x-ray radiation fields
    Publication

    - PHYSICAL REVIEW A - Year 2010

    We consider two-photon double ionization of helium with 100, 200, and 400 eV excess energy for the two ejected electrons, corresponding to photon energies of 89.5, 139.5, and 239.5 eV, respectively. We focus on the case of ultrashort pulses (two oscillations of the field) and develop an approach to calculate the two-photon transition matrix elements within the lowest order of the time-dependent perturbation theory. One of the...

    Full text available to download

  • Two-spinors, oscillator algebras, and qubits: aspects of manifestly covariant approach to relativistic quantum information
    Publication

    The first part of the paper reviews applications of 2-spinor methods to relativistic qubits (analogies between tetrads in Minkowski space and 2-qubit states, qubits defined by means of null directions and their role for elimination of the Peres-Scudo-Terno phenomenon, advantages and disadvantages of relativistic polarization operators defined by the Pauli-Lubanski vector, manifestly covariant approach to unitary representations...

    Full text available to download

Year 2008
Year 2015