Filtry
wszystkich: 2517
wybranych: 2055
-
Katalog
- Publikacje 2055 wyników po odfiltrowaniu
- Czasopisma 57 wyników po odfiltrowaniu
- Konferencje 40 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 73 wyników po odfiltrowaniu
- Projekty 6 wyników po odfiltrowaniu
- Aparatura Badawcza 1 wyników po odfiltrowaniu
- Kursy Online 19 wyników po odfiltrowaniu
- Wydarzenia 3 wyników po odfiltrowaniu
- Dane Badawcze 262 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: 1D%20CONVOLUTIONAL%20NEURAL%20NETWORK
-
Radioimmunotherapy with 90Y-ibritumomab tiuxetan is a safe and efficient treatment for patients with B-cell lymphoma relapsed after auto-SCT: an analysis of the international RIT-Network
Publikacja -
Zarządzanie (współzarządzanie) sieciowe i zarządzanie sieciami w wymiarze sprawiedliwości – wyzwania (15 stron) Governance network and networks governance in the justice system – challenges
PublikacjaCelem artykułu jest próba odpowiedzi na pytania czy w wymiarze sprawiedliwości jest miejsce i podstawa do wdrożenia zarządzania sieciowego (współzarządzania) oraz czy w działalności pomocniczej wymiaru sprawiedliwości istnieje potencjał do jego wdrożenia. W wymiarze sprawiedliwości istnieje duży potencjał do wykorzystania mechanizmów sieciowej współpracy. W ramach przestrzeni wymiaru sprawiedliwości współpraca międzyorganizacyjna...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublikacjaIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Advancing the evidence base for public policies impacting on dietary behaviour, physical activity and sedentary behaviour in Europe: The Policy Evaluation Network promoting a multidisciplinary approach
PublikacjaNon-communicable diseases (NCDs) are the leading cause of global mortality. As the social and economic costs of NCDs have escalated, action is needed to tackle important causes of many NCD’s: low physical activity levels and unhealthy dietary behaviours. As these behaviours are driven by upstream factors, successful policy interventions are required that encourage healthy dietary behaviours, improve physical activity levels and...
-
Analysis of Floodplain Inundation Using 2D Nonlinear Diffusive Wave Equation Solved with Splitting Technique
PublikacjaIn the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublikacjaThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
The role of EMG module in hybrid interface of prosthetic arm
PublikacjaNearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...
-
Computational intelligence methods in production management
PublikacjaThis chapter presents a survey of selected computational intelligence methods used in production management. This group of methods includes, among others, approaches based on the artificial neural networks, the evolutionary algorithms, the fuzzy logic systems and the particle swarm optimization mechanisms. From the abovementioned methods particularly noteworthy are the evolutionary and the particle swarm algorithms, which are successfully...
-
Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
PublikacjaIn this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Deep Features Class Activation Map for Thermal Face Detection and Tracking
PublikacjaRecently, capabilities of many computer vision tasks have significantly improved due to advances in Convolutional Neural Networks. In our research, we demonstrate that it can be also used for face detection from low resolution thermal images, acquired with a portable camera. The physical size of the camera used in our research allows for embedding it in a wearable device or indoor remote monitoring solution for elderly and disabled...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublikacjaThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Interaction Between Storm Water Conduit And Surface Flow For Urban Flood Inundation Modelling
PublikacjaRapid development of urban areas always comes with great side effects. One of them is the occurrence of urban floods. Growth of impervious surfaces in cities leads to increasing run-off values. This together with difficulties connected with sewage modernization in cities marks urban inundations as being one of the most important issues concerning urban water. Accurate prediction of a phenomenon is difficult as it is highly dependent...
-
The influence of polarization of titania nanotubes modified by a hybrid system made of a conducting polymer PEDOT and Prussian Blue redox network on the Raman spectroscopy response and photoelectrochemical properties
PublikacjaIn this work we show the impact of applied potential on network vibrations and photoelectrochemical properties of a composite material containing hydrogenated titania nanotubes and poly (3,4-ethylenedioxythiophene) with iron hexacyanoferrate (H-TiO2/pEDOT:Fehcf) acting as a redox centre. For this purpose, Raman spectroscopy measurements under the working electrode (WE) polarization were carried out, allowing investigation of changes...
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublikacjaPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis
PublikacjaThe paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...
-
IoT Based Intelligent Pest Management System for Precision Agriculture
PublikacjaDespite seemingly inexorable imminent risks of food insecurity that hang over the world, especially in developing countries like Pakistan where traditional agricultural methods are being followed, there still are opportunities created by technology that can help us steer clear of food crisis threats in upcoming years. At present, the agricultural sector worldwide is rapidly pacing towards technology-driven Precision Agriculture...
-
Hybrid Reduced Model of Continuous System
PublikacjaThe paper introduces an alternative method of modelling and modal reduction of continuous systems. Presented method is a hybrid one. It combines the advantages of modal decomposition method and the rigid finite element method. In the proposed method continuous structure is divided into one-dimensional continuous elements. For each 1D element modal decomposition and reduction is applied. Interactions between substructures are...
-
Prediction of effective substrate concentration and its impact on biogas production using Artificial Neural Networks in Hybrid Upflow anaerobic Sludge Blanket reactor for treating landfill leachate
Publikacja -
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublikacjaThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublikacjaThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
The Use of an Autoencoder in the Problem of Shepherding
PublikacjaThis paper refers to the problem of shepherding clusters of passive agents consisting of a large number of objects by a team of active agents. The problem of shepherding and the difficulties that arise with the increasing number of data describing the location of agents have been described. Several methods for reducing the dimensionality of data are presented. Selected autoencoding method using a Restricted Boltzmann Machine is...
-
Współpraca patentowa nauki i biznesu na przykładzie województwa podkarpackiego – analiza sieci / Network analysis of patent cooperation between science and business - the case of Subcarpathian region
Publikacja -
Playback detection using machine learning with spectrogram features approach
PublikacjaThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
MobileNet family tailored for Raspberry Pi
PublikacjaWith the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3. However, it was designed to achieve a good trade-off between...
-
Survival time prognosis under a Markov model of cancer development
PublikacjaIn this study we look at a breast cancer data set of women from Pomerania region collected in year 1987-1992 in the Medical University of Gdańsk. We analyze the clinical risk factors in conjunction with Markov model of cancer development. We evaluate Artificial Neural Network (ANN) survival time prediction via a simulation study.
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Pose classification in the gesture recognition using the linear optical sensor
PublikacjaGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Neuronowa symulacja temperatury i ciśnienia pary w upuście parowego bloku energetycznego = Neural simulation of pressure and temperature fluctuations at steam extraction of power units with steam turbine
PublikacjaW artykule przedstawiono metodę symulacji neuronowej dla zastosowań w diagnostyce on-line bloków energetycznych. Model neuronowy opiera się na statycznych jednokierunkowych sieciach neuronowych (SSN) oraz na danych z parowego bloku energetycznego o mocy 200 MW. SSN obliczają wartości referencyjne parametrów cieplno-przepływowych dla aktualnego obciążenia obiektu. Określono wpływ architektury sieci i danych uczących na jakość symulacji...
-
Modeling and optimizing the removal of cadmium by Sinapis alba L. from contaminated soil via Response Surface Methodology and Artificial Neural Networks during assisted phytoremediation with sewage sludge
Publikacja -
Protection in elastic optical networks
PublikacjaIn this article, we analyze gains resulting from the use of EON architectures with special focus on transportation of cloud-ready and content-oriented traffic in the context of network resilience. EONs are a promising approach for future optical transport networks and, apart from improving the network spectral efficiency, bring such new capabilities as squeezed protection, which reduces resource requirements in failure scenarios....
-
Video of LEGO Bricks on Conveyor Belt Dataset Series
PublikacjaThe dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.
-
Developing a Low SNR Resistant, Text Independent Speaker Recognition System for Intercom Solutions - A Case Study
PublikacjaThis article presents a case study on the development of a biometric voice verification system for an intercom solution, utilizing the DeepSpeaker neural network architecture. Despite the variety of solutions available in the literature, there is a noted lack of evaluations for "text-independent" systems under real conditions and with varying distances between the speaker and the microphone. This article aims to bridge this gap....
-
Analysis of the bulk solid flow during gravitational silo emptying using X-ray and ECT tomography
PublikacjaW pracy przedstawiono wyniki pomiarów zmian koncentracji piasku bezkohezyjnego zachodzących w prostokątnym modelu silosu opróżnianym grawitacyjnie. Pomiary wykonano z zastosowaniem kontynualnego promieniowania rentgenowskiego oraz z użyciem tomografii pojemnościowej. Badania wykonano dla zróżnicowanego zagęszczenia początkowego piasku oraz różnego stopnia szorstkości ścian. Szczególny nacisk położono na zachowanie sie materiału...
-
Influence of accelerometer signal pre-processing and classification method on human activity recognition
PublikacjaA study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.
-
Multifunctional PID Neuro-Controller for Synchronous Generator
PublikacjaThis paper deals with a PID Neuro-Controller (PIDNC) for synchronous generator system. The controller is based on artificial neural network and adaptive control strategy. It ensures two functions: maintaining the generator voltage at its desired value and damping electromechanical oscillations. The performance of the proposed controller is evaluated on the basis of simulation tests. A comparative study of the results obtained with...
-
Corrigendum to “Synthesis and photoelectrochemical behaviour of hydrogenated titania nanotubes modified with conducting polymer infiltrated by redox active network” [Electrochim. Acta 222 (20 December) (2016) 1281–1292]
Publikacja -
Exploring thiophene-2-acetate and thiophene-3-acetate binding modes towards the molecular and supramolecular structures and photoluminescence properties of Pb(ii) polymers
PublikacjaTo evaluate the impact of the flexible positional isomeric ligands thiophene-2-acetate (2tpacCOO) andthiophene-3-acetate (3tpacCOO) on the construction and self-assembly process of Pb(II) polymers, twonovel compounds, [Pb(2tpacCOO)2(H2O)]n(1) and [Pb(3tpacCOO)2]n(2), were preparedviaanonhydro-thermal method with respect to green chemistry rules. The obtained polymers were fully characterized byelemental analysis, TG/DTG and PXRD,...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublikacjaCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Automatic labeling of traffic sound recordings using autoencoder-derived features
PublikacjaAn approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...
-
The hydrogen bond network structure within the hydration shell around simple osmolytes: Urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model
PublikacjaDespite numerous experimental and computer simulation studies, a controversy still exists regarding the effect of osmolytes on the structure of surrounding water. There is a question, to what extent some of the contradictory results may arise from differences in potential models used to simulate the system or parameters employed to describe physical properties of the mixture and interpretation of the results. Bearing this in mind,...
-
The hydrogen bond network structure within the hydration shell around simple osmolytes: Urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model
PublikacjaDespite numerous experimental and computer simulation studies, a controversy still exists regarding the effect of osmolytes on the structure of surrounding water. There is a question, to what extent some of the contradictory results may arise from differences in potential models used to simulate the system or parameters employed to describe physical properties of the mixture and interpretation of the results. Bearing this in mind,...
-
Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach
PublikacjaTo improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....
-
Application of ANN and PCA to two-phase flow evaluation using radioisotopes
PublikacjaIn the two-phase flow measurements a method involving the absorption of gamma radiation can be applied among others. Analysis of the signals from the scintillation probes can be used to determine the number of flow parameters and to recognize flow structure. Three types of flow regimes as plug, bubble, and transitional plug – bubble flows were considered in this work. The article shows how features of the signals in the time and...
-
A new multi-process collaborative architecture for time series classification
PublikacjaTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublikacjaThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
ECT image analysis methods for shear zone measurements during silo discharging process
PublikacjaW pracy przedstawiono wyniki pomiarów zmian koncentracji piasku bezkohezyjnego zachodzących w cylindrycznym modelu silosu opróżnianym grawitacyjnie, w którym występowały silne efekty dynamiczne. Pomiary wykonano z zastosowaniem tomografii pojemnościowej. Badania przeprowadzono dla zróżnicowanego zagęszczenia początkowego piasku oraz różnego stopnia szorstkości ścian. Szczegółowej analizie poddano zmianę koncentracji materiału sypkiego...
-
Badania spektroskopowe wybranych silanotiolanów metali o budowie polimerycznej
PublikacjaPodjęto próby otrzymania tri-tert-butoksysilanotiolanowych kompleksów niklu(II), kobaltu(II), cynku(II) i kadmu(II) o budowie polimerycznej mogących pełnić rolę prekursorów w syntezie materiałów funkcjonalnych. W tym celu przeprowadzono syntezy odpowiednich silanotiolanowych metali z grupą diamin alifatycznych. Otrzymano szereg nowych obojętnych polimerów koordynacyjnych o budowie przestrzennej typu 1D. Dla siedmiu z nich zostały...
-
Flood Modelling and Risk Analysis of Cinan Feizuo Flood Protection Area, Huaihe River Basin
PublikacjaThis study evaluated multiple aspects of flood risks and effects on the Cinan Feizuo flood protection area in the Huaihe River basin. Flooding remains a leading problem for infrastructure, especially in urban, residential areas of the region. Effective flood modeling for urbanized floodplains is challenging, but MIKE (ID-2D) is paramount for analyzing and quantifying the risk in the vulnerable region. The Saint-Venant equation...