Filtry
wszystkich: 308
wybranych: 288
Wyniki wyszukiwania dla: discrete algorithms
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublikacjaIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....
-
Size effect in concrete under splitting tension
PublikacjaThe size effect is a fundamental phenomenon in concrete materials. It denotes that both the nominal structural strength and material ductility always decrease with increasing element size under tension. In the paper splitting tensile tests on cylindrical concrete specimens with the different diameter were carried out. Two types of the loading strip (plywood board and steel cylinder) were used. The concrete strength and ductility...
-
The model of end-to-end call setup time calculation for Session Initiation Protocol
PublikacjaEnd-to-end call setup delay is one of the most important grade of service (GoS) parameters for VoIP networks with Session Initiation Protocol (SIP). A typical subscriber wants to have a connection established as soon as possible. From the operator's perspective call setup time is also crucial because he needs to know how probability of successful packet transmission on SIP links is related to a call setup delay. Then he can make...
-
Optimal spindle speed determination for vibration reduction during ball-end milling of flexible details
PublikacjaIn the paper a method of optimal spindle speed determination for vibration reduction during ball-end milling of flexible details is proposed. In order to reduce vibration level, an original procedure of the spindle speed optimisation, based on the Liao–Young criterion, is suggested. As the result, an optimal, constant spindle speed value is determined. For this purpose, on-stationary computational model of machining process is...
-
Parallel Implementation of the Discrete Green's Function Formulation of the FDTD Method on a Multicore Central Processing Unit
PublikacjaParallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method was developed on a multicore central processing unit. DGF-FDTD avoids computations of the electromagnetic field in free-space cells and does not require domain termination by absorbing boundary conditions. Computed DGF-FDTD solutions are compatible with the FDTD grid enabling the perfect hybridization of FDTD...
-
Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow
PublikacjaTo find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is a discrete form of the differential energy equation. Such an approach requires the average energy slope between cross-sections to be estimated. In the literature, many methods are proposed for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the standard step method, the harmonic mean and...
-
FDTD Simulations on Disjoint Domains with the Use of Discrete Green's Function Diakoptics
PublikacjaA discrete Green's function (DGF) approach to couple disjoint domains in the finite-difference time-domain (FDTD) grid is developed. In this method, total-field/scattered-field (TFSF) FDTD domains are associated with simulated objects whereas the interaction between them is modeled with the use of the DGF propagator. Hence, source and scatterer are simulated in separate domains and updating of vacuum cells, being of little interest,...
-
Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates
PublikacjaIn this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ_{M1→E2}) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 \leqslant Z \leqslant 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid...
-
A model of fuel combustion process in the marine reciprocating engine work space taking into account load and wear of crankshaft-piston assembly and the theory of semi-Markov processes
PublikacjaThe ar ticle analyses the operation of reciprocal internal combu stion engines, with mar ine engines u sed a s an example. The analysis takes into account types of energy conversion in the work spaces (cylinders) of these engines, loads of their crankshaft-piston assemblies, and types of fuel combustion which can take place in these spaces during engine operation. It is highlighted that the analysed time-dependent loads of marine...
-
An algorithm to generate high dense packing of particles with various shapes
PublikacjaDiscrete Element Method (DEM) is one of available numerical methods to compute movement of particles in large scale simulations. The method has been frequently applied to simulate the cases of grain or bulk material as the major research issue. The paper describes a new method of generating high dense packing with mixed material of two different shape used in DEM simulation. The initial packing is an important parameter to control,...
-
Average Redundancy of the Shannon Code for Markov Sources
PublikacjaIt is known that for memoryless sources, the average and maximal redundancy of fixed–to–variable length codes, such as the Shannon and Huffman codes, exhibit two modes of behavior for long blocks. It either converges to a limit or it has an oscillatory pattern, depending on the irrationality or rationality, respectively, of certain parameters that depend on the source. In this paper, we extend these findings, concerning the Shannon...
-
Pounding between Inelastic Three-Storey Buildings under Seismic Excitations
PublikacjaStructural interactions between adjacent, insufficiently separated buildings have been repeatedly observed during damaging ground motions. This phenomenon, known as the structural pounding, may result in substantial damage or even total collapse of structures. The aim of the present paper is to show the results of the nonlinear numerical analysis focused on pounding between inelastic three-storey buildings under seismic excitations....
-
Towards solving heterogeneous fleet vehicle routing problem with time windows and additional constraints: real use case study
PublikacjaIn advanced logistic systems, there is a need for a comprehensive optimization of the transport of goods, which would reduce costs. During past decades, several theoretical and practical approaches to solve vehicle routing problems (VRP) were proposed. The problem of optimal fleet management is often transformed to discrete optimization problem that relies on determining the most economical transport routes for a number of vehicles...
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublikacjaFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
Sensing the onset of epoxy coating degradation with combined Raman spectroscopy/atomic force microscopy/electrochemical impedance spectroscopy
PublikacjaThe paper presents the results of investigation on epoxy resin durability upon 12-week exposure to UV radiation. The aim was early determination of the onset of epoxy degradation and for this purpose an epoxy film on steel substrate systems were periodically inspected using Raman spectroscopy, atomic force microscopy and electrochemical impedance spectroscopy. The behaviour of examined polymer could be divided into three periods: immunity,...
-
Shear band evolution phenomena in direct shear test modelled with DEM.
PublikacjaA direct shear test is widely used in the geotechnical engineering field. It is an easy and quick test to measure the shear properties of soil. This test often replaces more expensive and difficult tri-axial shear test. Despite that the direct shear test is known and used for a long time, it is still not well investigated at the grain scale. This paper deals with the micro behaviour of the cohesionless sand inside the direct shear...
-
EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONCRETE BEHAVIOUR AT MESO-LEVEL DURING QUASI-STATIC SPLITTING TENSION
PublikacjaThe paper describes experimental and numerical results of quasi-static splitting tensile tests on concrete specimens at meso-scale level. The loading strip was made of plywood or steel. Fracture in concrete was detected at the aggregate level by means of three non-destructive methods: 3D x-ray micro-computed tomography, 2D scanning electron microscope and manual 2D digital microscope. The discrete element method was used to directly...
-
Micro-modelling of shear localization during quasi-static confined granular flow in silos using DEM
PublikacjaThe paper deals with the quasi-static confined flow of cohesionless sand in a plane strain model silo with parallel walls and a slowly movable bottom. Numerical modelling was carried out by the discrete element method (DEM) using spheres with contact moments to approximately capture a non-uniform shape of sand particles. Different initial void ratios of sand and silo wall roughness grades were employed. Regular triangular grooves...
-
A constitutive law for concrete with smooth transition from continuous into discontinuous cracks’ description
PublikacjaPaper presents a constitutive model for concrete that combines a continuous and discontinuous crack’s description to simulate the concrete under tensile dominated loads. In a continuum regime, two different constitutive laws were used. First, a plasticity model with the Rankine failure criterion and an associated flow rule was used. Second, a constitutive law based on isotropic damage mechanics was formulated. Both model alternatives...
-
Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach
PublikacjaThe paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow...
-
Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua method
PublikacjaWe present a two phase flow conceptual model, the corresponding simulator (2pMINC) and a workflow for large-scale fractured reservoirs, based on a continuum fracture approach which uses the multiple interacting continua (MINC) method complemented with an improved upscaling technique. The complex transient behavior of the flow processes in fractured porous media is captured by subgridding the coarse blocks in nested volume elements...
-
Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system
PublikacjaThis paper presents an implementation of the FDTD-compatible Green's function on a heterogeneous parallel processing system. The developed implementation simultaneously utilizes computational power of the central processing unit (CPU) and the graphics processing unit (GPU) to the computational tasks best suited to each architecture. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates...
-
Model-Free Controller Tuning Based on DFT Processing: Application to Induction Motor Drives
PublikacjaIn this paper, we present a new approach based on discrete Fourier transform (DFT) analysis for controller tuning of the closed-loop system with unknown plant. The DFT analysis is used to process the closed-loop measurements collected online to derive the frequency response of an initial closed-loop system that does not provide a good performance. Based on the closed-loop frequency response data, we propose two methods for tuning PID...
-
Canonical switched capacitor converters. Comments, complements, and refinements
PublikacjaSwitched Capacitor Converters (SCC) form useful blocks in low/medium power applications as they are suitable for integration, both as off-chip and on-chip IC realizations. However, the problem with SCC is that their voltage conversion ratio is topology-dependent. By changing the SC circuit configuration, we can gain control over voltage conversion but the available ratio remains of a discrete nature, i.e. it maps into a countable...
-
About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof
PublikacjaRecently, the fractional Noether's theorem derived by G. Frederico and D.F.M. Torres in [10] was proved to be wrong by R.A.C. Ferreira and A.B. Malinowska in (see [7]) using a counterexample and doubts are stated about the validity of other Noether's type Theorem, in particular ([9],Theorem 32). However, the counterexample does not explain why and where the proof given in [10] does not work. In this paper, we make a detailed analysis...
-
Size effect in concrete beams under bending – influence of the boundary layer and the numerical description of cracks
PublikacjaIn the paper the size effect phenomenon in concrete is analysed. The results of numerical simulations of using FEM on geometrically similar un-notched and notched concrete beams under bending are presented. Concrete beams of four different sizes and five different notch heights under three-point bending test were simulated. In total 18 beams were analysed. Two approaches were used to describe cracks in concrete. First, eXtended...
-
Wavelet filtering of signals without using model functions
PublikacjaThe effective wavelet filtering of real signals is impossible without determining their shape. The shape of a real signal is related to its wavelet spectrum. For shape analysis, a continuous color wavelet spectrogram of signal level is often used. The disadvantage of continuous wavelet spectrogram is the complexity of analyzing a blurry color image. A real signal with additive noise strongly distorts the spectrogram based on continuous...
-
An Improved Method of Minimizing Tool Vibration during Boring Holes in Large-Size Structures
PublikacjaThe paper presents a thoroughly modified method of solving the problem of vibration suppression when boring large-diameter holes in large-size workpieces. A new approach of adjusting the rotational speed of a boring tool is proposed which concerns the selection of the spindle speed in accordance with the results of the simulation of the cutting process. This streamlined method focuses on phenomenological aspects and involves the...
-
Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure
PublikacjaThe paper describes experimental and numerical results of concrete fracture under quasi-static uniaxial compression. Experimental uniaxial compression tests were performed on concrete cubic specimens. Fracture in concrete was detected at the aggregate level by means of three non-destructive methods: three-dimensional X-ray microcomputed tomography, two-dimensional scanning electron microscope and manual two-dimensional digital...
-
Applications of the discrete green's function in the finite-difference time-domain method
PublikacjaIn this paper, applications of the discrete Green's function (DGF) in the three-dimensional (3-D) finite-difference time-domain (FDTD) method are presented. The FDTD method on disjoint domains was developed employing DGF to couple the subdomains as well as to compute the electromagnetic field outside these subdomains. Hence, source and scatterer are simulated in separate subdomains and updating of vacuum cells, being of little...
-
Behaviour of Colliding Multi-Storey Buildings under Earthquake Excitation Considering Soil-Structure Interaction
PublikacjaThis paper investigates the coupled effect of the supporting soil flexibility and pounding between neighbouring, insufficiently separated buildings under earthquake excitation. Two adjacent three-storey structures, modelled as inelastic lumped mass systems with different structural characteristics, have been considered in the study. The models have been excited using the time history of the Kobe earthquake of 1995. A nonlinear...
-
Independent dynamics of slow, intermediate, and fast intracranial EEG spectral activities during human memory formation
PublikacjaA wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various low and high frequencies are spatiotemporally coordinated across the human brain during memory processing is inconclusive. They can either be coordinated together across a wide range of the frequency spectrum or induced in specific bands. We used a large dataset of human intracranial electroencephalography...
-
Connection matrix theory for discrete dynamical systems
PublikacjaIn [C] and [F1] the connection matrix theory for Morse decomposition is developedin the case of continuous dynamical systems. Our purpose is to study the case of discrete timedynamical systems.
-
Structured deformation of granular material in the state of active earth pressure
PublikacjaThe paper focuses on the ability of granular materials to undergo structured deformation by analysing the data from the retaining wall model tests and discrete element simulations. The structured deformation means the movement of a granular material which produces a stable, regular pattern of multiple shear bands. The paper's primary purpose is to study this kind of deformation for the selected data representing the state of active...
-
On some problems in determining tensile parameters of concrete model from size effect tests
PublikacjaThe paper presents results of numerical simulations of size effect phenomenon in concrete specimens. The behaviour of in-plane geometrically similar notched and unnotched beams under three-point bending is investigated. In total 18 beams are analysed. Concrete beams of four different sizes and five different notch to depth ratios are simulated. Two methods are applied to describe cracks. First, an elasto-plastic constitutive law...
-
Investigations of size effect in concrete at aggregate level - experiments and calculations results using discrete element method
PublikacjaSize effect is a fundamental phenomenon in concrete. It is characterised by decreasing strength and increasing brittleness of concrete with increasing size. The thesis includes experimental and theoretical elements. The main goal of the thesis were investigations of a size effect at the aggregate level by taking fracture into account with the discrete element method (DEM) for various failure modes. Comprehensive experiments on...
-
Size effect at aggregate level in microCT scans and DEM simulation – Splitting tensile test of concrete
PublikacjaThe paper describes an experimental and numerical study of size effect on concrete cylindrical specimens in splitting tensile test. Own experimental campaign was performed on specimens with 5 various diameters from D = 74, 105, 150, 192 and 250 mm with hardboard loading strips (distributed load according to standard methods) scaled proportionally to the specimen diameter. The crack opening-control system was applied to obtain the...
-
An Efficient PEEC-Based Method for Full-Wave Analysis of Microstrip Structures
PublikacjaThis article introduces an efficient method for the equivalent circuit characterization and full-wave analysis of microstrip structures, leveraging the full-wave partial element equivalent circuit (PEEC). In particular, the multilayered Green's function is evaluated using the discrete complex-image method (DCIM) and employed to establish the mixed potential integral equations. The proposed strategy considers time delays for the...
-
Modification of the Reloading Plastic Modulus in Generalized Plasticity Models for Soil by Introducing a New Equation for the Memory Parameter in Cyclic Loadings
PublikacjaNowadays, with the widespread supply of very powerful laboratory and computer equipment, it is expected that the analyses conducted for geotechnical problems are carried out with very high precision. Precise analyses lead to better knowledge of structures’ behavior, which, in turn, reduces the costs related to uncertainty of materials’ behavior. A precise analysis necessitates a precise knowledge and definition of the behavior...
-
From Darcy to Turbulent Flow: Investigating Flow Characteristics and Regime Transitions in Porous Media
PublikacjaThis research addresses the flow characteristics within a porous medium composed of a monolayer of closely packed spheres, spanning from viscous-dominated to turbulent flow regimes. In the first part of this paper, the turbulent flow characteristics at a 30 MPa pressure drop within the domain are presented. The results are averaged across different cross-sections between the inlet and outlet. In the second part of the study, simulations...
-
Intelligent Lossy Compression Method of Providing a Desired Visual Quality for Images of Different Complexity
PublikacjaLossy compression plays a vital role in modern digital image processing for producing a high compression ratio. However, distortion is unavoidable, which affects further image processing and must be handled with care. Providing a desired visual quality is an efficient approach for reaching a trade-off between introduced distortions and compression ratio; it aims to control the visual quality of the decompressed images and make...
-
Modelling of high frequency dynamic responses of engineering structures
PublikacjaModelling of high frequency dynamic responses of engineering structures, especially those related to wave propagation, is a real numerical challenge. Nowadays most of numerical models, used for that purpose, are based on the application of various finite element techniques. However, finite element discrete models may also be considered as possessing certain periodic structures, which may manifest themselves in particular scenarios....
-
Sano-Tachiya-Noolandi-Hong, Onsager and Braun models vs Monte Carlo simulation of charge photogeneration in organic solids
PublikacjaThe Sano-Tachiya-Noolandi-Hong (STNH), Onsager, and Braun models as well as Monte Carlo (MC) simulations of charge recombination/separation have been applied for the first time to reproduce the results of the electromodulated photoluminescence measurements in vacuum-evaporated films of fluorescent materials commonly used in optoelectronic devices. The values of the electron-hole pair final recombination speed in the monomer emitters:...
-
Non-uniqueness of fracture parameter choice in simulations of concrete cracking at mesoscale level
PublikacjaIn the paper a non-uniqueness of fracture parameter choice in simulations of cracking process in plain concrete specimens at mesoscale level under monotonic static loading is analysed. The Finite Element Method is used, where cracks are defined in a discrete way using interface cohesive elements with nonlinear material law including softening. The concrete mesostructure (such as: cement matrix, air voids, aggregates, and Interfacial...
-
Acceleration of the Discrete Green’s Function Formulation of the FDTD Method Based on Recurrence Schemes
PublikacjaIn this paper, we investigate an acceleration of the discrete Green's function (DGF) formulation of the FDTD method (DGF-FDTD) with the use of recurrence schemes. The DGF-FDTD method allows one to compute FDTD solutions as a convolution of the excitation with the DGF kernel. Hence, it does not require to execute a leapfrog time-stepping scheme in a whole computational domain for this purpose. Until recently, the DGF generation...
-
Towards application of uncertainty quantification procedure combined with experimental procedure for assessment of the accuracy of the DEM approach dedicated for granular flow modeling
PublikacjaThere is a high demand for accurate and fast numerical models for dense granular flows found in many industrial applications. Nevertheless, before numerical model can be used its need to be always validated against experimental data. During the validation, it is important to consider how the measurement data sets, as well as the numerical models, are affected by errors and uncertainties. In this study, the uncertainty quantification...
-
Three dimensional simulations of FRC beams and panels with explicit definition of fibres-concrete interaction
PublikacjaHigh performance concrete (HPC) is a quite novel material which has been rapidly developed in the last few decades. It exhibits superior mechanical properties and durability comparing to normal concrete. HPC can achieve also superior tensile performance if strong fibres (steel or carbon) are implemented in the matrix. Thus, there exist the unabated interest in studying how the addition of different types of fibres modifies the...
-
Electrical Stimulation Modulates High Gamma Activity and Human Memory Performance
PublikacjaDirect electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation...
-
Digits Recognition with Quadrant Photodiode and Convolutional Neural Network
PublikacjaIn this paper we have investigated the capabilities of a quadrant photodiode based gesture sensor in the recognition of digits drawn in the air. The sensor consisting of 4 active elements, 4 LEDs and a pinhole was considered as input interface for both discrete and continuous gestures. Index finger and a round pointer were used as navigating mediums for the sensor. Experiments performed with 5 volunteers...
-
Dia- and paramagnetic contributions to magnetizabilities of relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates
PublikacjaIn this paper we present tabulated data for relative diamagnetic and paramagentic contributions to the magnetizability ($\chi$) of the relativistic hydrogenlike atoms with a pointlike, motionless and spinless nucleus of charge $Ze$. Utilizing general analytical formulas for the diamagnetic ($\chi_{d}$) and paramagnetic ($\chi_{p}$) components of $\chi$, recently derived by us [P. Stefa{\'n}ska, 2020] with the aid of the Gordon...