Filtry
wszystkich: 20641
wybranych: 663
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: BONE TISSUE REGENERATION,
-
Silk Fibroin/Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials toward Bone Tissue Regeneration
Publikacja -
Cu-HKUST-1 and Hydroxyapatite–The Interface of Two Worlds toward the Design of Functional Materials Dedicated to Bone Tissue Regeneration
PublikacjaA novel composite based on biocompatible hydroxyapatite (HA) nanoparticles and Cu-HKUST-1 (Cu-HKUST-1@HA) has been prepared following a layer-by-layer strategy. Cu-HKUST-1 was carefully selected from a group of four Cu-based metal−organic frameworks as the material with the most promising antimicrobial activity. The formation of a colloidal Cu- HKUST-1 layer on HA nanoparticles was confirmed by various techniques, e.g., infrared...
-
Biomaterials with Potential Use in Bone Tissue Regeneration—Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS
Publikacja -
Tribology of bone tissue culture in bioreactor.
PublikacjaOpracowano system tribologiczny powstających sił tarcia w bioreaktorze. Pomimo, że wartości sił tarcia osiągają wartości poniżej 0,1 N to mają one decydujący wpływ na wartość porostu tkanki. Mechanika opływu tkanki cieczą o właściwościach biologicznych nienewtonowskich oraz hydrodynamiczna teoria opływu warstwy przyściennej jest bazą wyznaczania parametrów trybologicznychniniejszej pracy.
-
Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration
PublikacjaBacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin...
-
Young’s modulus distribution in the FEM models of bone tissue
PublikacjaThis paper presents how differences of Young’s modulus in adjacent finite elements typical for organic materials such as bone tissue, influence stress calculating. Emphasizing high computational cost of variable Young’s modulus in parts of the model, where the number of finite elements has been raised, the authors wants to prove that new model of finite element which has variable Young’s modulus in its volume needs to be created....
-
TG and DSC studies of bone tissue: Effects of osteoporosis
Publikacja -
Comparative review of piezoelectric biomaterials approach for bone tissue engineering
PublikacjaBone as a minerals’ reservoir and rigid tissue of the body generating red and white blood cells supports various organs. Although the self-regeneration property of bone, it cannot regenerate spontaneously in severe damages and still remains as a challenging issue. Tissue engineering offers several techniques for regenerating damaged bones, where various biomaterials are examined to fabricate scaffolds for bone repair. Piezoelectric...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublikacjaDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
Polyphenol-Enriched Composite Bone Regeneration Materials: A Systematic Review of In Vitro Studies
Publikacja -
In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration
Publikacja -
BIOLOGICAL AGE ASSESSMENT ALGORITHMS BASED ON X-RAY IMAGES OF BONE TISSUE
Publikacja-
-
Formulation and In Vitro Characterization of Bioactive Mesoporous Silica with Doxorubicin and Metronidazole Intended for Bone Treatment and Regeneration
Publikacja -
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublikacjaBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...
-
Cost-Effective and Sufficiently Precise Integration Method Adapted to the FEM Calculations of Bone Tissue
PublikacjaThe technique of Young’s modulus variation in the finite element is not spread in biomechanics. Our future goal is to adapt this technique to bone tissue strength calculations. The aim of this paper is to present the necessary studies of the element’s integration method that takes into account changes in material properties. For research purposes, a virtual sample with the size and distribution of mechanical properties similar...
-
Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration
PublikacjaIn this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik...
-
Human bone marrow as a tissue in post-mortem identification and determination of psychoactive Substances—Screening methodology
Publikacja -
The Influence of Calcium Glycerophosphate (GPCa) Modifier on Physicochemical, Mechanical, and Biological Performance of Polyurethanes Applicable as Biomaterials for Bone Tissue Scaffolds Fabrication
PublikacjaIn this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as...
-
Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering
PublikacjaIn this work, a novel polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol, and ascorbic acid was used to prepare scaffolds with potential applications in bone tissue engineering. Two fabrication methods to obtain porous materials were chosen: phase separation (PS)/salt particle leaching (PL) and solvent casting (SC)/salt PL. The calculated porosity demonstrated...
-
Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering
PublikacjaThis paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially...
-
Discovery of small-molecule regenerative drugs using a model of complex tissue injury in mice. Transcriptomic responses of neurodevelopmental genes during pharmacologically induced regeneration
PublikacjaDespite significant development in regenerative medicine, there is a deficit of effective therapies for wound healing and tissue regeneration. Research performed using animal wound models allows for a better understanding of this complex process, searching for compounds with pro-regenerative properties, and assessing their efficacy and safety. Unfortunately, the lack of adequate preclinical models proves to be an issue as no animal...
-
Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications
Publikacja -
Protective impact of extract from Aronia melanocarpa berries against low-level exposure to cadmium-induced lipid peroxidation in the bone tissue: a study in a rat model
Publikacja -
Biomechanical properties of 3D-printed bone models
PublikacjaBone lesions resulting from large traumas or cancer resections can be successfully treated by directly using synthetic materials or in combination with tissue engineering methods (hybrid). Synthetic or hybrid materials combined with bone tissue’s natural ability for regeneration and biological adaptation to the directions of loading, allow for full recovery of its biological functions. Increasing interest in new production methods...
-
Development of polyurethanes for bone repair
PublikacjaThe purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublikacjaBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Green Polymer Nanocomposites for Skin Tissue Engineering
PublikacjaFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition
PublikacjaThe skeleton is a crucial element of the motion system in the human body, whose main function is to support and protect the soft tissues. Furthermore, the elements of the skeleton act as a storage place for minerals and participate in the production of red blood cells. The bone tissue includes the craniomaxillofacial bones, ribs, and spine. There are abundant reports in the literature indicating that the amount of treatments related...
-
Degradable poly(ester-ether) urethanes of improved surface calcium deposition developed as novel biomaterials
PublikacjaBones, which are considered as hard tissues, work as scaffold for human body. They provide physical support for muscles and protect intestinal organs. Percentage of hard tissues in human body depends on age, weight, and gender. Human skeleton consists of 206 connected bones. Therefore, it is natural that the hard-tissue damage such as fractures, osteoporosis, and congenital lack of bone may appear. The innovative way of bone healing...
-
Titania Nanofiber Scaffolds with Enhanced Biointegration Activity—Preliminary In Vitro Studies
PublikacjaThe increasing need for novel bone replacement materials has been driving numerous studies on modifying their surface to stimulate osteogenic cells expansion and to accelerate bone tissue regeneration. The goal of the presented study was to optimize the production of titania-based bioactive materials with high porosity and defined nanostructure, which supports the cell viability and growth. We have chosen to our experiments TiO2...
-
Polyurethanes Crosslinked with Poly(vinyl alcohol) as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine
PublikacjaNovel, slowly-degradable and hydrophilic materials with proper mechanical properties and surface characteristics are in great demand within the biomedical field. In this paper, the design, synthesis, and characterization of polyurethanes (PUR) crosslinked with poly(vinyl alcohol) (PVA) as a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized by a two-step polymerization performed in a solvent...
-
Polylysine for Skin Regeneration: A Review of Recent Advances and Perspectives
PublikacjaThere have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can not only be used as tissue engineering scaffolds for skin regeneration, but also as drug carriers...
-
Three-Dimensional Printing of Bone Models
PublikacjaThe trabecular bone occurs, for example, in the femoral heads. Understanding the phenomenon of bone tissue degeneration can be the basis for the possibility of looking for alternative methods of surgical treatment of bone loss. The paper presents the results of the trabecular bone model, which was produced in additive manufacturing method with fused filament fabrication technology. The verification of the mechanical behavior of...
-
Application of Bladder Acellular Matrix in Urinary Bladder Regeneration: The State of the Art and Future Directions
PublikacjaConstruction of the urinary bladder de novo using tissue engineering technologies is the “holy grail” of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM). In this review we determine the most important factors, which may affect biological and physical properties...
-
Effect of Nanohydroxyapatite on Silk Fibroin–Chitosan Interactions—Molecular Dynamics Study
PublikacjaFibroin–chitosan composites, especially those containing nanohydroxyapatite, show potential for bone tissue regeneration. The physicochemical properties of these biocomposites depend on the compatibility between their components. In this study, the intermolecular interactions of fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems were investigated: one containing acetic acid and the other...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublikacjaThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
Magnetic nanocomposites for biomedical applications
PublikacjaTissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular,...
-
ASCORBIC ACID IN POLYURETHANE SYSTEMS FOR TISSUE ENGINEERING
PublikacjaThe introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for...
-
Epigenetic Basis of Regeneration: Analysis of Genomic DNA Methylation Profiles in the MRL/MpJ Mouse
PublikacjaEpigenetic regulation plays essential role in cell differentiation and dedifferentiation, which are the intrinsic processes involved in regeneration. To investigate the epigenetic basis of regeneration capacity, we choose DNA methylation as one of the most important epigenetic mechanisms and the MRL/MpJ mouse as a model of mammalian regeneration known to exhibit enhanced regeneration response in different organs. We report the...
-
Electrically Conductive Carbon‐based (Bio)‐nanomaterials for Cardiac Tissue Engineering
PublikacjaA proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials...
-
Soft Tissue Retraction Maneuver in Cone Beam Computed Tomography Prior to Crown-Lengthening Procedure—A Technical Note
PublikacjaBackground: An accurate determination of the biological width and the relationship of the cemento-enamel junction with the border of the alveolar bone is crucial during a clinical crown-lengthening (CCL) procedure. The aim of this study was to present a technical note about the retraction techniques in cone beam computed tomography (CBCT) prior to CCL, highlighting the significant enhancement in procedural accuracy and predictability...
-
Imunofan—RDKVYR Peptide—Stimulates Skin Cell Proliferation and Promotes Tissue Repair
PublikacjaRegeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today’s science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we...
-
The cement-bone bond is weaker than cement-cement bond in cement-in-cement revision arthroplasty. A comparative biomechanical study
PublikacjaThis study compares the strength of the native bone-cement bond and the old-new cement bond under cyclic loading, using third generation cementing technique, rasping and contamination of the surface of the old cement with biological tissue. The possible advantages of additional drilling of the cement surface is also taken into account. Femoral heads from 21 patients who underwent a total hip arthroplasty performed for hip arthritis...
-
A new finite element with variable Young's modulus
PublikacjaThe Finite Element Method (FEM) is a numerical technique that is well-established in the field of engineering. However, in biological sciences, it is justtaking its first steps. Bone tissue is an example of biological material which isexposed to high loads in its natural environment. Practically every movementof the body results in changing stress levels in the bone. Nature copes with thisvery well but when human intervention is...
-
Marine polymers in tissue bioprinting: Current achievements and challenges
PublikacjaBioprinting has a critical role in tissue engineering, allowing the creation of sophisticated cellular scaffolds with high resolution, shape fidelity, and cell viability. Achieving these parameters remains a challenge, necessitating bioinks that are biocompatible, printable, and biodegradable. This review highlights the potential of marine-derived polymers and crosslinking techniques including mammalian collagen and gelatin along...
-
Imunofan - RDKVYR peptide - stimulates skin cell proliferation and promotes tissue repair
PublikacjaRegeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical...
-
Bone healing under different lay‐up configuration of carbon fiber‐reinforced PEEK composite plates
PublikacjaSecondary healing of fractured bones requires an application of an appropriate fixa-tor. In general, steel or titanium devices are used mostly. However, in recent years,composite structures arise as an attractive alternative due to high strength to weightratio and other advantages like, for example, radiolucency. According to Food andDrug Administration (FDA), the only unidirectionally reinforced composite allowed tobe implanted...
-
Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering
PublikacjaThe literature describes that the most efficient cell penetration takes place at 200–500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL). The main advantage of this technique is its simplicity and cost efficiency, while its main disadvantage is the scaffold thickness, which is usually not less than...
-
Novel Research on Biomedical Polyurethanes
PublikacjaThe variety of mechanical properties characterizes properly designed PURs. They may be biocompatible and reveal compatibility with blood, making them attractive materials for the fabrication of tissue scaffolds; however, like all synthetic materials, PURs don’t reveal sufficient biocompatibility. PURs may undergo certain chemical modifications (e.g., 1,4:3,6-dianhydro-D-sorbitol, ascorbic acid (AA), growth factors, covering with...
-
Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials
PublikacjaThe important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are...