Filtry
wszystkich: 63
wybranych: 60
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: SHEAR DEFORMATION
-
The Influence of Shear Deformation in analysis of plane frames
PublikacjaThe focus of the paper is to investigate the influence of shear deformation effect on the distribution of internal forces and frame deformation. To estimate shear deformation effect, the Timoshenko beam theory and the concept of shear deformation coefficients are used. Analysis of example frames gives the possibility to evaluate what have the most impact on size of shear deformation and in which type of frames the shear deformation...
-
Large rotations in first-order shear deformation FE analysis of laminated shells
PublikacjaAbstrakt: Teoria powłok o skończonych obrotach w ramach modelu ścinania pierwszego rzędu stanowi podstawę zaprezentowanego w pracy algorytmu MES statycznej, geometrycznie nieliniowej analizy konstrukcji warstwowych. Szczególną uwagę zwrócono na właściwy opis skończonych obrotów przy zastosowaniu kątów Eulera oraz procedurę uaktualniania parametrów obrotowych. Przedstawiono sformułowanie przyrostowe w stacjonarnym opisie Lagrange´a....
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which leads to one equation similar to the Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublikacjaIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory
PublikacjaThis paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublikacjaIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures
Publikacja -
A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law
PublikacjaPurpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors...
-
The effect of shear deformations' rotary inertia on the vibrating response of multi-physic composite beam-like actuators
PublikacjaIn consecutive studies on flexomagneticity (FM), this work investigates the flexomagnetic reaction of a vibrating squared multi-physic beam in finite dimensions. It is assumed that the bending and shear deformations cause rotary inertia. In the standard type of the Timoshenko beam the rotary inertia originated from shear deformations has been typically omitted. It means the rotary inertia resulting from shear deformation is a new...
-
Structured deformation of granular material in the state of active earth pressure
PublikacjaThe paper focuses on the ability of granular materials to undergo structured deformation by analysing the data from the retaining wall model tests and discrete element simulations. The structured deformation means the movement of a granular material which produces a stable, regular pattern of multiple shear bands. The paper's primary purpose is to study this kind of deformation for the selected data representing the state of active...
-
Temperature influences on shear stability of a nanosize plate with piezoelectricity effect
PublikacjaPurpose The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment. Design/methodology/approach Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account...
-
A study on transverse shear correction for laminated sandwich panels
PublikacjaThe paper presents a study on an application of the First Order Shear Deformation Theory in a linear static analysis of elastic sandwich panels. A special attention has been given to the issue of the transverse shear correction. Two benchmark examples of sandwich plate problems with known reference solutions have been selected for a comparative analysis performed with own Finite Element codes. Interesting results allowed for drawing...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublikacjaThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
Equivalent single-layer models in deformation analysis of laminated multilayered plates
PublikacjaThe performance of selected Equivalent Single-Layer (ESL) models is evaluated within several classical benchmark tests for linear static analysis of multi-layered plates. The authors elaborated their own Finite Element software based on the first-order shear deformation theory (FOSD) with some modifications incorporated including a correction of the transverse shear stiffness and an application of zig-zag type functions. Seven...
-
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublikacjaIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
Optical flow method for measuring deformation of soil specimen subjected to torsional shearing
PublikacjaIn this study optical flow method was used for soil small deformation measurement in laboratory tests. The main objective was to observe how the deformation distributes along the whole height of cylindrical soil specimen subjected to torsional shearing (TS test). The experiments were conducted on dry non-cohesive soil specimens under two values of isotropic pressure. Specimens were loaded with low-amplitude cyclic torque to analyze...
-
M-integral for finite anti-plane shear of a nonlinear elastic matrix with rigid inclusions
PublikacjaThe path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem...
-
Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behavior of a Sand
PublikacjaBiopolymers, which are microbially induced polymers, can be used as an alternative material to improve engineering performance of soils. In this paper, a laboratory study of 0.075-1.0 mm size sand and biopolymer (i.e., xanthan gum) mixtures with various mix ratios (0%, 0.5%, 1.0%, and 1.5%) was performed. The materials, specimen preparation, and test methods are described, as are the results of a suite of permeability, odometer, unconfined...
-
LCF behavior of 2024AA under uni- and biaxial loading taking into account creep pre-deformation
PublikacjaThis study presents the results of experimental low-cycle fatigue (LCF) tests of aluminum 2024 alloy T3511 temper in uni- and biaxial loading states. Tests were carried out on both the as-received material (hardened extruded rods) and material with different pre-deformation histories. These deformations were carried out in the creep process at 200 °C and 300 °C for two different levels of at each temperature. The pre-deformed material’s...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublikacjaIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Equivalent Single Layer Models in Free Vibration Analysis of Laminated Multi-Layered Plates
PublikacjaThe performance of selected equivalent single-layer (ESL) models is evaluated within several classical benchmark tests for small amplitude free vibration analysis of multi-layered plates. The authors elaborated their own Finite Element software based on the first-order shear deformation (FOSD) theory with some modifications incorporated including a correction of the transverse shear stiffness and an application of zigzag type functions....
-
Bending of a Three-Layered Plate with Surface Stresses
PublikacjaWe discuss here the bending deformations of a three-layered plate taking into account surface and interfacial stresses. The first-order shear deformation plate theory and the Gurtin-Murdoch model of surface stresses will be considered and the formulae for stiffness parameters of the plate are derived. Their dependence on surface elastic moduli will be analyzed.
-
Bearing capacity of working platform using distinct layout optimization method
PublikacjaBearing capacity of the working platforms from sandy soil resting on NC and OC clays was analyzed using LimitState GEO program. Different failure modes are considered using distinct layout optimization (DLO) method, which forms the upper bound solution of limit state analysis. Different mechanisms of failure were observed as a function of the platform thickness, angle of internal friction of the platform material and undrained...
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublikacjaWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
Continuum models for pantographic blocks with second gradient energies which are incomplete
PublikacjaWe postulate a deformation energy for describing the mechanical behavior of so called pantographic blocks, that is bodies constituted by stacking of layers of pantographic sheets. We remark that the pantographic effect is limited in the plane of pantographic sheets and therefore only the second derivatives of transverse displacements along the pantographic fibers appear in the chosen deformation energy. We use this novel energy...
-
Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach
PublikacjaIn this article, a new refined beam theory, namely one variable first-order shear deformation theory, has been employed to study the vibration and buckling characteristics of nonlocal beam. The beam is exposed to an axial magnetic field and embedded in Winkler–Pasternak foundation. The von Kármán hypothesis along with Hamilton’s principle has been implemented to derive the governing equations for both the vibration and buckling...
-
Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum
PublikacjaIn this research, the shear and thermal buckling of bi-layer rectangular orthotropic carbon nanosheets embedded on an elastic matrix using the nonlocal elasticity theory and non-linear strains of Von-Karman was studied. The bi-layer carbon sheets were modeled as a double-layered plate, and van der Waals forces between layers were considered. The governing equations and boundary conditions were obtained using the first order shear...
-
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
PublikacjaIn the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing...
-
Tensile failure study of 3D printed PLA using DIC technique and FEM analysis
PublikacjaThe paper presents the experimental and numerical study of the failure behaviour of Fused Filament Fabricated (FFF) Polylactic Acid (PLA) samples subjected to tensile load. The examined samples are printed in flat orientation with 0◦, 45◦ and 90◦ raster angles. During the experiments the deformation of the specimens is continuously scanned with the 3D Aramis measuring system utilizing the digital imaging correlation technique,...
-
The Influence of Impact Velocity on Stresses and Failure of S355j2 Steel Under Slurry Erosion Conditions
PublikacjaThe purpose of this work was to determine the essence of the influence of the impact velocity (5, 7, and 9 m/s) on Hertzian stresses and the erosion mechanism of ferritic-pearlitic S355J2 steel. The investigations were carried out using a slurry pot tester. S355J2 steel showed a strong sensitivity to changes in impact velocity. A significant increase in erosion rate was observed at a velocity of 9 m/s. This increase was 5-fold...
-
Electroelastic biaxial compression of nanoplates considering piezoelectric effects
PublikacjaIn the present theoretical work, it is assumed that a piezoelectric nanoplate is connected to the voltage meter which voltages have resulted from deformation of the plate due to in-plane compressive forces whether they are critical buckling loads or arbitrary forces. In order to derive governing equations, a simplified four-variable shear deformation plate theory has been employed using Hamilton’s principle and Von-Kármán...
-
Large thermo-elastic displacement and stability FEM analysis of multilayered plates and shells
PublikacjaThe paper concerns the load capacity analysis of thermally loaded multilayered plates and shells. The multilayered body is treated as an equivalent single layer whose kinematics is consistent with first order shear deformation theory. The authors focus on the thermo-elastic stability problem of the thin-walled structures. The equilibrium paths are traced with the use of Riks-Wempner-Ramm algorithm. By making use of the Tsai-Wu...
-
Material Identification of the Human Abdominal Wall Based On the Isogeometric Shell Model
PublikacjaThe human abdominal wall is an object of interest to the research community in the context of ventral hernia repair. Computer models require a priori knowledge of constitutive parameters in order to establish its mechanical response. In this work, the Finite Element Model Updating (FEMU) method is used to identify an heterogeneous shear modulus distribution for a human abdominal wall model, which is based on nonlinear isogeometric...
-
Thermo-elastic non-linear analysis of multilayered plates and shells
PublikacjaGeometrically nonlinear FEM analysis of multilayered composite plates and shells is performed in order to resolve the stability problem of the structures being under the influence of temperature field. The Riks-Wempner-Ramm algorithm with a specially modified multi-choice unloading condition has been implemented in authors’ numerical code. As the representation of multilayered medium the Equivalent Single Layer approach with the...
-
Effectiveness of a mathematical model in simulating nonlinear mechanical behaviour of a seismic isolation system made of polymeric bearings
PublikacjaThe present study was focused on determining the effectives of a nonlinear mathematical model in simulating complex mechanical behaviour of a seismic isolation system made of Polymeric Bearings. The proposed mathematical model defines the lateral force as a nonlinear function of the shear displacement and the deformation velocity. The effectiveness of the proposed mathematical model was verified by comparing the seismic response...
-
Effect of Sinusoidal Corrugated Geometries on the Vibrational Response of Viscoelastic Nanoplates
PublikacjaThe vibrational behavior of viscoelastic nanoplates with a corrugated geometry is a key topic of practical interest. This problem is addressed here for wrinkled nanoplates with small corrugations related to incorrect manufacturing. To this end, a new One-Variable First-order Shear Deformation plate Theory (OVFSDT) is proposed in a combined form with a non-local strain gradient theory. The Kelvin–Voigt model is employed to describe...
-
Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect
PublikacjaGalerkin weighted residual method (GWRM) is applied and implemented to address the axial stability and bifurcation point of a functionally graded piezomagnetic structure containing flexomagneticity in a thermal environment. The continuum specimen involves an exponential mass distributed in a heterogeneous media with a constant square cross section. The physical neutral plane is investigated to postulate functionally graded material...
-
Propagation of acoustic pulses in some fluids with yield stress
PublikacjaThis study is devoted to the derivation of approximate equations governing acoustic pulses in flows with yieldstress, including some time-dependent flows with a slow dependence on time of yield stress and apparent viscosity. Themodeling of yield stress and apparent viscosity in the vicinity of a zero deformation rate allows us to consider a thixotropicfluid as a Bingham plastic with coefficients that are dependent on time. The...
-
Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field
PublikacjaThis paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order...
-
Numerical Modeling of Cone Penetration Test in Slightly Overconsolidated Clay with Arbitrary Lagrangian-Eulerian Formulation
PublikacjaIn this paper the results of the cone penetration test (CPT) modeling with the arbitrary Lagrangian-Eulerian (ALE) formulation provided by Abaqus software package have been presented. The study compares the cone resistance and sleeve friction obtained in numerical analysis with values measured in soundings performed in the uniform layer of clayey soil in the Koszalin area. The clay layer was found to be slightly overconsolidated...
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublikacjaThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
PublikacjaThis article is intended to analyze forced vibrations of a piezoelectric-piezomagnetic ceramic nanoplate by a new refined shear deformation plate theory in conjunction with higher-order nonlocal strain gradient theory. As both stress nonlocality and strain gradient size-dependent effects are taken into account using the higher-order nonlocal strain gradient theory, the governing equations of the composite nanoplate are formulated....
-
The protocol for using elastic wall model in modeling blood flow within human artery
PublikacjaMedical diagnostic tools will play a major role in the future for an effective patient treatment and reduction their mortality, related to the cardiovascular system diseases (CVDs). There is an urgent need for developing diagnostic procedure to be robust, reliable, accurate and efficient, in the framework of a paradigm shift. Application of numerical techniques is seen as a perspective tool for such purpose. Nevertheless, existing...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublikacjaIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory
PublikacjaIn the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform compression using the modified couple stress continuum theory with various boundary conditions has been considered. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using the Hamilton’s principle. An analytical approach has been applied to obtain...
-
Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory
PublikacjaIn this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes (SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated considering the effects of surface energy and surface residual stresses. The nanotubes are embedded in the elastic substrate of the Winkler type and are also exposed to low and high-temperature environments. A new refined beam theory namely, one-variable...
-
Textile reinforced concrete members subjected to tension, bending, and in-plane loads: Experimental study and numerical analyses
PublikacjaTextile reinforced concrete has raised increasing research interest during the last years, mainly due to its potential to be used for freeform shell structures involving complex load situations. Yet, most experimental work has focused on test setups with primarily uniaxial loading. In the current work, such setups are complemented with a novel test setup of deep beams, including in-plane bending and shear. Further, nonlinear finite...
-
Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory
PublikacjaThis article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy...
-
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
PublikacjaIn this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the...