Filtry
wszystkich: 306
Wyniki wyszukiwania dla: SHEAR RATE
-
A benchmark for particle shape dependence
PublikacjaParticle shape is a major parameter for the space-filling and strength properties of granular materials. For a systematic investigation of shape effect, a numerical benchmark test was set up within a collaborative group using different numerical methods and particles of various shape characteristics such as elongation, angularity and nonconvexity. Extensive 2D shear simulations were performed in this framework and the shear strength...
-
M-integral for finite anti-plane shear of a nonlinear elastic matrix with rigid inclusions
PublikacjaThe path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem...
-
Elastoplastic law of Cosserat type in shell theory with drilling rotation
PublikacjaWithin the framework of six-parameter non-linear shell theory, with strain measures of the Cosserat type, we develop small-strain J2-type elastoplastic constitutive relations. The relations are obtained from the Cosserat plane stress relations assumed in each shell layer, by through-the-thickness integration employing the first-order shear theory. The formulation allows for unlimited translations and rotations. The constitutive...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublikacjaIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Relationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz-Hodge decomposition.
PublikacjaRelationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz-Hodge decomposition. Granular Matter, doi:10.1007/s10035-018-0815-0, 2018.
-
Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach
PublikacjaIn this article, a new refined beam theory, namely one variable first-order shear deformation theory, has been employed to study the vibration and buckling characteristics of nonlocal beam. The beam is exposed to an axial magnetic field and embedded in Winkler–Pasternak foundation. The von Kármán hypothesis along with Hamilton’s principle has been implemented to derive the governing equations for both the vibration and buckling...
-
Bearing capacity of working platform using distinct layout optimization method
PublikacjaBearing capacity of the working platforms from sandy soil resting on NC and OC clays was analyzed using LimitState GEO program. Different failure modes are considered using distinct layout optimization (DLO) method, which forms the upper bound solution of limit state analysis. Different mechanisms of failure were observed as a function of the platform thickness, angle of internal friction of the platform material and undrained...
-
Effect of the Drying Method of Pine and Beech Wood on Fracture Toughness and Shear Yield Stress
PublikacjaThe modern wood converting processes consists of several stages and material drying belongs to the most influencing future performances of products. The procedure of drying wood is usually realized between subsequent sawing operations, affecting significantly cutting conditions and general properties of material. An alternative methodology for determination of mechanical properties (fracture toughness and shear yield stress) based...
-
Influence of the grains shape on the mechanical behavior of granular materials
PublikacjaDiscrete Element Method is a numerical method suitable for modeling geotechnical problems concerning granular media. In most cases simple forms of grains, like discs or spheres, are used. But these shapes are capable of soil behavior modeling up to a certain point only, they cannot reflect all of the features of the medium (large shear resistance and large volumetric change). In order to reflect the complex behavior of the real...
-
Effect of Chitosan Solution on Low-Cohesive Soil’s Shear Modulus G Determined through Resonant Column and Torsional Shearing Tests
PublikacjaIn this study the effect of using a biopolymer soil stabilizer on soil stiffness characteristics was investigated. Chitosan is a bio-waste material that is obtained by chemical treatment of chitin (a chemical component of fungi or crustaceans’ shells). Using chitosan solution as a soil stabilizer is based on the assumption that the biopolymer forms temporary bonds with soil particles. What is important is that these bonds are biodegradable,...
-
Dynamics of cutting power during sawing with circular saw blades as an effect of wood properties changes in the cross section
PublikacjaIn the paper the effect of the method calculation upon the cutting power is presented. In computations were used models in which fracture toughness was incorporated. The comparison concerned models as follows: FM-CM – classic model in which the sum of all uncut chip thicknesses of the simultaneously teeth engaged represented the mean uncut chip thickness, FM-FDM – full dynamical model in which besides variable uncut chip thickness...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublikacjaThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
Influence of sheet/purlin fasteners spacing on shear flexibility of the diaphragm
PublikacjaThe paper presents the influence of sheet/purlin fasteners location (in reference to trapezoidal profile cross section) on shear flexibility of the cladding acting as a diaphragm. Analytical procedures were presented and their limitations were discussed. Next, selected schemes of fasteners location, known from engineering practice, but not included in European codes and recommendations, were analysed numerically in order to observe...
-
Influence of anisotropic stiffness in numerical analyses of tunneling and excavation problems in stiff soils
PublikacjaIn the stiff overconsolidated soil deposits anisotropy influences small and intermediate strain stiffness and hence it has important impact on the results of discplacement preditcions in soil-structure modelling. The authors developed a cross-anisotropic soil model which combines both stress dependent and micro-structural anisotropy. The model is based on the anisotropic hyperelastic kernel for small strain stiffness. Reference...
-
Bending of a Three-Layered Plate with Surface Stresses
PublikacjaWe discuss here the bending deformations of a three-layered plate taking into account surface and interfacial stresses. The first-order shear deformation plate theory and the Gurtin-Murdoch model of surface stresses will be considered and the formulae for stiffness parameters of the plate are derived. Their dependence on surface elastic moduli will be analyzed.
-
Influence of grain shape on the mechanical behaviour of granular materials
PublikacjaWe performed series of numerical vertical compression tests on assemblies of 2D granular material using a Discrete Element code and studied the results in regard to the grain shape. The samples consist of 5000 grains made either of 3 overlapping discs (clump - grain with concavities) or of six-edged polygons (convex grain). These two types of grains have a similar external envelope, ruled with a geometrical parameter α. In the...
-
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
PublikacjaIn the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing...
-
Experimental Determination of Limit Adhesive Shear Strtess between Solid Wall and Liquid
PublikacjaTheoretically slip of a fluid with respect to the solid wall should occur even at a very low velocity of motion. However theoretical analysisand some empirical data suggest that there must be a limit value of shear stress, below which the slip does not appear. A simple metyhod of this stress determination was proposed in the paper.
-
Application of fracture mechanics for energetic effects predictions while wood sawing
PublikacjaIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (power) could be considered from a point of view of modern fracture mechanics. Cutting forces may be employed to determine not only toughness...
-
Some geomechanical properties of a biopolymer treated medium sand
PublikacjaSome geomechanical properties of a biopolymer treated medium sand. This paper presents a laboratory assessment of geomechanical properties of sandy soil improved by biopolymer application. Additives (biosubstance) consist of polysaccharides and water. Biosubstance used in the project was xanthan gum, which comes from bacteria Xanthomonas campestris. Triaxial shear compression tests and unconfi ned compression tests were carried...
-
On rotational instability within the nonlinear six-parameter shell theory
PublikacjaWithin the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters...
-
Optimisation and field assessment of poroelastic wearing course bond quality
PublikacjaCompared to typical asphalt mixtures, poroelastic mixtures are characterised by high porosity and high flexibility, which are desirable for traffic noise reduction. However, the same properties increase the risk of debonding from the lower layer, which is a significant source of premature damage. The study investigates which of the factors – tack coat agent, type and texture of the lower layer – have the greatest impact on interlayer...
-
Methods of solving the Atkins equation determine shear angle with taking into consideration a modern fracture mechanics
PublikacjaIn the paper are presented methods of solving nonlinear Atkins equation . The Atkins equation describe shear angle with taking into account properties of material cutting. To solve Atkins equation has been used iterative methods: Newton method and simplified method of simple iteration. Method of simple iteration is presented in the form of Java application.
-
Application of Fracture Mechanics for Energetic Effects Predictions While Wood Sawing
PublikacjaIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (or power - more interesting from energetic point of view) could be considered from a point of view of modern fracture mechanics. Cutting...
-
Sawing Processes as a Way of Determining Fracture Toughness and Shear Yield Stresses of Wood
PublikacjaA new computational model, based on fracture mechanics, was used to determine cutting forces. Unlike traditional computing methods, which depend on many coefficients reflecting the machining of solid wood, the new model uses two main parameters: fracture toughness and shear yield stresses. The aim of this study was to apply this new method to determine these parameters for the tooth cutting edge principal positions and longitudinal...
-
Analytical model with non-adiabatic effects for pressure drop and heat transfer during boiling and condensation flows in conventional channels and minichannels
PublikacjaIn the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for boiling flow and condensation flow with account of non- adiabatic effects for some recent data collected from literature. The first effect, the modification of interface shear stresses in annular flow pattern is considered through incorporation of the so called "blowing parameter". The mechanism of...
-
SUBSOIL CHARACTERISTICS OF THE VISTULA RIVER DIKES
PublikacjaThe results of CPTU tests are used to determine the strength parameters of a dike subsoil. Stress state and stress history of the subsoil under the flood embankment was evaluated with CPTU and DMT tests. Normally consolidated soil was found under the central part of the dike, while the subsoil near the dike toe is found to be overconsolidated. Due to consolidation the undrained shear strength of the subsoil under the central part...
-
Material Identification of the Human Abdominal Wall Based On the Isogeometric Shell Model
PublikacjaThe human abdominal wall is an object of interest to the research community in the context of ventral hernia repair. Computer models require a priori knowledge of constitutive parameters in order to establish its mechanical response. In this work, the Finite Element Model Updating (FEMU) method is used to identify an heterogeneous shear modulus distribution for a human abdominal wall model, which is based on nonlinear isogeometric...
-
Anti-plane shear waves in an elastic strip rigidly attached to an elastic half-space
PublikacjaWe consider the anti-plane shear waves in a domain consisting of an infinite layer with a thin coating lying on an elastic half-space. The elastic properties of the coating, layer, and half-space are assumed to be different. On the free upper surface we assume the compatibility condition within the Gurtin–Murdoch surface elasticity, whereas at the plane interface we consider perfect contact. For this problem there exist two possible...
-
Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches
PublikacjaThe paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack...
-
Micro-modelling of shear localization during quasi-static confined granular flow in silos using DEM
PublikacjaThe paper deals with the quasi-static confined flow of cohesionless sand in a plane strain model silo with parallel walls and a slowly movable bottom. Numerical modelling was carried out by the discrete element method (DEM) using spheres with contact moments to approximately capture a non-uniform shape of sand particles. Different initial void ratios of sand and silo wall roughness grades were employed. Regular triangular grooves...
-
A newly-developed model for predicting cutting power during wood sawing with circular saw blades
PublikacjaIn the classical approach, cutting forces and cutting power in sawing processes of orthotropic materials such as wood are generally calculated on the basis of the specific cutting resistance kc (cutting force per unit area of cut). For every type of sawing kinematics (frame saws, band saws and circular sawing machines) different empirical values of specific cutting resistance kc have to be applied. It should be emphasised that...
-
The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
PublikacjaBoundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58...
-
Transverse surface waves on a cylindrical surface with coating
PublikacjaWe discuss the propagation of transverse surface waves that are so-called whispering-gallery waves along a surface of an elastic cylinder with coating. The coating is modelled in the framework of linearized Gurtin–Murdoch surface elasticity. Other interpretations of the surface shear modulus are given and relations to so-called stiff interface and stiff skin model are discussed. The dispersion relations are obtained and analyzed.
-
Discrete Modelling of Micro-structural Phenomena in Granular Shear Zones
PublikacjaThe micro-structure evolution in shear zones in cohesionless sand for quasi-static problems was analyzed with a discrete element method (DEM). The passive sand failure for a very rought retaining wall undergoing horizontal translation towards the sand backfill was discussed. To simulate the behaviour of sand, the spherical discrete element model was used with elements in the form of rigid spheres with contacts moments.
-
Fracture Toughness and Shear Yield Strength Determination for Two Selected Species of Central European Provenance
PublikacjaWhen offcut of wood is formed by shearing, Atkins’s analyses of sawing processes can be applied. Using this modern approach, it is possible to determine the fracture toughness and shear yield strength of wood. This model is only applicable for the axial-perpendicular cutting direction because both of these parameters are suitable for the given direction of cutting edge movement and cannot be considered material constants. Alternatively,...
-
Composite Beams with glass and reinforced or prestressed concrete - early stage of a theorethical and experimental analysis of a shear zone
PublikacjaThe aim of this article is to present a forgoing preparation for a theoretical and experimental analysis of a shear zone of a composite beams with glass and reinforced or prestressed concrete. Authors present their current knowledge, achievements and predicted challenges in later stages of the research. Properties of component materials are presented in the context of compensating weaknesses of one material with strengths of the...
-
Some aspects of the constitutive modelling of natural fine grained soils
PublikacjaThe monograph deals with selected problems of the constitutive modelling of natural fine grained soils commonly known as clays. The main idea is not to propose a unified model which is capable of describing all known features of mechanical behaviour of fine grained soils. Instead, separate models are proposed describing the mechanical behaviour of heavily overconsolidated, lightly overconsolidated and normally consolidated clays....
-
Comparative modeling of shear localization in granular bodies with FEM and DEM
PublikacjaThe intention of the paper is to compare the calculations of shear zones in granular bodies using two different approaches: a continuum and a discrete one. In the first case, the FEM based on a micro-polar hypoplastic constitutive law was used. In the second case, the DEM was taken advantage of, where contact moments were taken into account to model grain roughness. The comparative calculations were performed for a passive case...
-
Particle shape dependence in 2D granular media
PublikacjaParticle shape is a key to the space-filling and strength properties of granular matter. We consider a shape parameter eta describing the degree of distortion from a perfectly spherical shape. Encompassing most specific shape characteristics such as elongation, angularity and non-convexity, eta is a low-order but generic parameter that we used in a numerical benchmark test for a systematic investigation of shape dependence in sheared...
-
Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect
PublikacjaGalerkin weighted residual method (GWRM) is applied and implemented to address the axial stability and bifurcation point of a functionally graded piezomagnetic structure containing flexomagneticity in a thermal environment. The continuum specimen involves an exponential mass distributed in a heterogeneous media with a constant square cross section. The physical neutral plane is investigated to postulate functionally graded material...
-
Incorporating installation effects into the probability analysis of controlled modulus columns
PublikacjaThis technical report presents the probabilistic analysis which integrates the Monte Carlo simulation (MCS) with random field theory to model the load–displacement behavior of Controlled Modulus Columns (CMCs) in overconsolidated Poznań clay. Presented study focuses on the practical aspects of statistical analysis of geotechnical data, numerical model development, and results evaluation. Variability and spatial distribution of...
-
Can we really solve an arch stability problem?
PublikacjaWe bring attention to the problem of solving nonlinear boundary-value problems for elastic structures such as arches and shells. Here we discuss a classical problem of a shear-deformable arch postbuckling. Considering a postbuckling behaviour of a circular arch we discuss the possibility to find numerically a solution for highly nonlinear regimes. The main attention is paid to the problem of determination of all solutions. The...
-
Galerkin formulations with Greville quadrature rules for isogeometric shell analysis: Higher order elements and locking
PublikacjaWe propose new Greville quadrature schemes that asymptotically require only four in-plane points for Reissner-Mindlin (RM) shell elements and nine in-plane points for Kirchhoff-Love (KL) shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree of the elements. For polynomial degrees 5 and 6, the approach delivers high accuracy, low computational cost, and alleviates membrane and...
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublikacjaWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
The influence of screw configuration and screw speed of co-rotating twin screw extruder on the properties of products obtained by thermomechanical reclaiming of ground tire rubber
PublikacjaThe results of our investigations on the process of continuous thermomechanical reclaiming of ground tire rubber (GTR) carried out using a twin screw extruder are presented.We used a co-rotating twin screw extruder with a special configuration of plasticizing unit, enabling generation of considerable shear forces. The influence of screw configuration and screw speed on breaking of chemical crosslink bonds contained in ground tire...
-
The Use of Direct Shear Test for Optimization of Interlayer Bonding Under a Poroelastic Layer
PublikacjaPoroelastic Road Surfaces (PERS) are characterised by porous structure with air void content of 20% or higher and stiffness almost 10 times lower than that of a standard asphalt course. Such properties enable noise reduction by up to 12 dB in comparison to SMA 11 mixture. However, the disadvantage of a poroelastic pavement is its low durability, which partially results from delamination from the lower layer. The paper aims to investigate...
-
Mechanical testing of technical woven fabrics
PublikacjaThis article presents a review of technical fabrics testing methods used by the authors on the basis of their experience with research on properties of polytetrefluoroethylene-coated fabrics used for Forest Opera in Sopot (Poland). First, the different types of testing methods used for description of mechanical properties (uniaxial tensile tests, biaxial tensile tests and shear tests) of technical woven fabrics are described. The...
-
Experimental investigations on concrete beams reinforced with CFRP lamellas
PublikacjaPaper presents experimental investigation made on two concrete beams reinforced with internal Carbon Fibre Reinforced Polymer (CFRP) lamellas (i.e. strips, bands). The reinforcement geometrical arrangement was similar as in normal concrete beams reinforced with steel bars and stirrups. The beams were destroyed by the shear forces, as intended. Obtained load-carrying capacities were lower as expected: below 40% of a calculated value....
-
Revisiting The Determination Of Cutting Power While Sawing Of Wood With Circular Saw Blades By Means Of Fracture Mechanics
PublikacjaIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (power) could be considered from a point of view of modern fracture mechanics. Cutting forces may be employed to determine not only toughness...