Wyniki wyszukiwania dla: ZINC OXIDE, METRONIDAZOLE, ULTRAVIOLET RAYS, NANOPARTICLES
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 70 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapasitor with the use of ZnO coated microsphere-based fiber-optic sensor - 30 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 130 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 110 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 120 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 100 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublikacjaPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublikacjaThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films
PublikacjaIn this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes,...
-
Photocatalytically Active TiO2/Ag2O Nanotube Arrays Interlaced with Silver Nanoparticles Obtained from the One-Step Anodic Oxidation of Ti–Ag Alloys
PublikacjaThe development of a photocatalyst with remarkable activity to degrade pollutants in aqueous and gas phase requires visible lightresponsive stable materials, easily organized in the form of a thin layer (to exclude the highly expensive separation step). In this work, we present a one-step strategy for synthesizing material in the form of a self-organized TiO2/Ag2O nanotube (NT) array interlaced with silver nanoparticles (as in a...
-
Gas‐Phase Removal of Indoor Volatile Organic Compounds and Airborne Microorganisms Over Mono‐ and Bimetal‐Modified (Pt, Cu, Ag) Titanium(IV) Oxide Nanocomposites
PublikacjaThe photocatalytic deactivation of volatile organic compounds and mold fungi using TiO2 modified with mono‐ and bimetallic (Pt, Cu, Ag) particles is reported in this study. The mono‐ and bimetal‐modified (Pt, Cu, Ag) titanium(IV) oxide photocatalysts were prepared by chemical reduction method and characterized using XRD, XPS, DR/UV‐Vis, BET and TEM analysis. The effect of incident light, type and content of mono‐ and bimetallic...
-
Anisotropic optical properties of few-layer black phosphorus coatings: from fundamental insights to opto-electrochemical sensor design
PublikacjaFew-layer black phosphorus (FLBP) is characterised by a tuneable bandgap, high carrier mobility and anisotropic optical properties. It therefore has the potential to find applications in electronics and photonics. FLBP oxidizes upon exposure to air, limiting its utility in devices and components. To address this issue, the thesis introduces methods and tools developed for studying FLBP's optical parameters, with a particular emphasis...
-
Microscale diamond protection for a ZnO coated fiber optic sensor
PublikacjaFiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage...
-
Fiber-optic sensors based on microspheres with nanocoatings (Zastosowanie mikrosfer optycznych z cienkowarstwowymi pokryciami w czujnikach światłowodowych)
PublikacjaTemperature is one of the most important physical quantities. Temperature measurements are used in every field of life, especially electronics, electrical engineering, energy-related fields, including energy source and storage devices. The goal of this dissertation is to design and optimize the microsphere-based fiber-optic sensors construction for measurement of the sensor surrounding medium temperature, including selection of...
-
Diamond protection for reusable ZnO coated fiber-optic measurement head in optoelectrochemical investigation of bisphenol A
PublikacjaDue to the global problem with plastic contaminating the environment, with bisphenol A (BPA) being one of the highest demand, effective monitoring and purification of the pollutants are required. The electrochemical methods constitute a good solution but, due to polymerization of electrochemical oxidation bisphenol A products and their adsorption to the surfaces, measurement head elements are clogged by the formed film. In this...
-
In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium
PublikacjaDespite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium–phosphate...
-
Rheological, Mechanical, Microstructural and Radiation Shielding Properties of Cement Pastes Containing Magnetite (Fe3O4) Nanoparticles
PublikacjaThis work examines the influence of iron oxide nanoparticles (Fe3O4 NPs) on neutron and gamma-ray radiation shielding characteristics of Portland cement paste. Experimental evaluations were supplemented with theoretical studies using NXCom program. Portland cement pastes with 5, 10, 15, 20, and 30 wt% of nanomagnetite cement replacement were produced. Moreover, rheological, early strength development, compressive strength, and...
-
Application of boron-doped diamond film and ZnO layer in the Fabry-Pérot interferometer
PublikacjaIn this article there have been presented the use of boron-doped diamond films for sensor applications. The low-finesse Fabry-Pérot interferometer working in the reflective mode has been implemented. Two kinds of reflective layers have been elaborated: boron-doped diamond thin films and zinc-oxide (ZnO) layer. Thin ZnO layers were deposited by Atomic Layer Deposition (ALD) on the face of a standard telecommunication single-mode...
-
Development of Biocompatible Fe3O4@SiO2 Nanoparticles as Subcellular Delivery Platform for Glucosamine-6-phosphate Synthase Inhibitors
PublikacjaNumerous inhibitors of glucoseamine-6-phophate synthase (GlcN-6-P), the enzyme responsible from catalysis of the first step of metabolic pathway leading to metabolism 5’-diphospho-N-acetyl-D- glucosamine, were reported as effective agents for inhibiting the growth of various fungal pathogens. Among the reported inhibitors,...
-
Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water
PublikacjaIn the present study treatability of persistent organic compounds from the flow back water after hydrauling fracturing was investigated. The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhance the separation and recoverable property of nanosized TiO2 photocatalyst. Fe3O4/ TiO2 and Fe3O4@SiO2/TiO2 nanocomposites were prepared by heteroagglomeration. The photocatalysts’ characteristics by X-ray diffractometry...
-
Nanoparticles preparation using microemulsion systems
PublikacjaMetallic nanoparticles become of current interests because they exhibit unique properties compared with those of metal atoms or bulk metal due to the quantum size effect and their large surface area, which make them attractive for applications in optics, electronics, catalysis biology and medicine. TiO2 has been used for environmental remediation purposes such as in the purification of water and air and also solar-to chemical energy...
-
Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles
PublikacjaIn this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet–Visible (UV–Vis),...
-
The Effect of Marginal Zn2+ Excess Released from Titanium Coating on Differentiation of Human Osteoblastic Cells
PublikacjaComposite coatings based on chitosan and zinc nanoparticles (ZnNPs) were successfully produced on Ti13Zr13Nb substrates by cathodic electrophoretic deposition (EPD). The unfavorable phenomenon of water electrolysis-induced nonuniformity was reduced by applying a low voltage (20 V) and a short deposition time (1 min). Surface analysis (roughness and hydrophilicity) reveals the potential of these coatings for enhancing cell attachment...
-
Kinetics of molecular decomposition under irradiation of gold nanoparticles with nanosecond laser pulses—A 5-Bromouracil case study
PublikacjaABSTRACT Laser illuminated gold nanoparticles (AuNPs) efficiently absorb light and heat up the surrounding medium, leading to versatile applications ranging from plasmonic catalysis to cancer photothermal therapy. Therefore, an in-depth understanding of the thermal, optical, and electron induced reaction pathways is required. Here, the electrophilic DNA nucleobase analog 5-Bromouracil (BrU) has been used as a model compound to...
-
Influence of selected submicron inorganic particles on mechanical and thermo-mechanical properties of unsaturated polyester/glass composites
PublikacjaIn this paper, the influence of different submicron-scaled particles (zinc oxide, titanium dioxide, or silica) on mechanical and thermo-mechanical properties of unsaturated polyester matrix composites reinforced with glass fabric was investigated. Surface morphology of obtained composites was also examined. At first inorganic particles were mechanically dispersed into unsaturated polyester resin system as per the calculated weight...
-
Theoretical investigation of the structural insights of the interactions of γ-Fe2O3 nanoparticle with (EMIM TFSI) ionic liquid
PublikacjaOne of the possible applications of ionic liquids is to produce electricity from heat. The iron oxide nanoparticle is a potent electrical particle, which is expected to improve the heat’s efficiency to electricity conversion, however, it is prone to aggregation and sedimentation, which hamper its application. One of the methods to enhance the nanoparticle’s solubility and electrical properties is the use of a stabilizing component...
-
UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles
PublikacjaThe combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu) TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy...
-
Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption
PublikacjaGraphene hydrogels were prepared by ascorbic acid-assisted gelation of graphene oxide (GO) aqueous suspensions both in acidic and basic conditions. Different mass ratio of ascorbic acid (AA) to GO was used (namely 20:1 and 10:1). In order to eliminate the influence of AA on the final structure of hydrogels, samples without AA were prepared by a hydrothermal gelation of GO in an autoclave. An in-depth structural characterization...
-
Preparation and photocatalytic activity of Nd-modified TiO2 photocatalysts: Insight into the excitation mechanism under visible light
PublikacjaTitanium dioxide (TiO2) nanoparticles (NPs) modified with neodymium (Nd) in the range between 0.1 and 1.0 mol% were prepared via the hydrothermal method. The samples obtained were characterized by diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), X-ray fluorescence (EDX), Brunauer–Emmett–Teller (BET) method, X-ray powder diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence...
-
Emerging oxidized and defective phases in low-dimensional CrCl3
PublikacjaTwo-dimensional (2D) magnets such as chromium trihalides CrX3 (X ¼ I, Br, Cl) represent a frontier for spintronics applications and, in particular, CrCl3 has attracted research interest due its relative stability under ambient conditions without rapid degradation, as opposed to CrI3. Herein, mechanically exfoliated CrCl3 flakes are characterized at the atomic scale and the electronic structures of pristine, oxidized, and defective...
-
Cytocompatibility, antibacterial, and corrosion properties of chitosan/polymethacrylates and chitosan/poly(4‐vinylpyridine) smart coatings, electrophoretically deposited on nanosilver‐decorated titania nanotubes
PublikacjaThe development of novel implants subjected to surface modification to achieve high osteointegration properties at simultaneous antimicrobial activity is a highly current problem. This study involved different surface treatments of titanium surface, mainly by electrochemical oxidation to produce a nanotubular oxide layer (TNTs), a subsequent electrochemical reduction of silver nitrate and decoration of a nanotubular surface with...
-
Exhaled breath gas sensing using pristine and functionalized WO3 nanowire sensors enhanced by UV-light irradiation
PublikacjaThe development of advanced metal-oxide-semiconductor sensing technologies for the detection of Volatile Organic Compounds (VOCs) present in exhaled breath is of great importance for non-invasive, cheap and fast medical diagnostics. Our experimental studies investigate the effects of operating temperature selection and UV-light irradiation on improving the response of WO3 nanowire sensors towards exhaled breath exposure. Herein,...
-
Photoelectrochemically Active N‐Adsorbing Ultrathin TiO2 Layers for Water‐Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environment
PublikacjaHighly performing photocatalytic surfaces are nowadays highly desirable in energy fields, mainly due to their applicability as photo water‐splitting electrodes. One of the current challenges in this field is the production of highly controllable and efficient photoactive surfaces on many substrates. Atomic layer deposition has allowed the deposition of photoactive TiO2 layers over wide range of materials and surfaces. However,...
-
A study of the kinetics of bismuth telluride synthesis by an oxide reduction method
PublikacjaThe kinetics of a reduction of bismuth and tellurium oxides in a hydrogen atmosphere, leading to the formation of thermoelectric bismuth telluride is investigated. The evaluation of the reaction kinetics was based on a thermogravimetric analysis performed in non-isothermal conditions. A non-parametric analysis method and the Friedman method were used for the evaluation of the data. Additionally, for a better understanding of the...
-
Enhanced solar light photocatalytic performance of Fe-ZnO in the presence of H2O2, S2O82−, and HSO5− for degradation of chlorpyrifos from agricultural wastes: Toxicities investigation
PublikacjaThis study reported Fe doped zinc oxide (Fe-ZnO) synthesis to degrade chlorpyrifos (CPY), a highly toxic organophosphate pesticide and important sources of agricultural wastes. Fourier transform infrared, X-ray diffraction, scanning electron microscope, and energy-dispersive X-ray spectroscopic analyses showed successful formation of the Fe-ZnO with highly crystalline and amorphous nature. Water collected from agricultural wastes...
-
Antibacterial properties of laser-encapsulated titanium oxide nanotubes decorated with nanosilver and covered with chitosan/Eudragit polymers
PublikacjaTo provide antibacterial properties, the titanium samples were subjected to electrochemical oxidation in the fluoride-containing diethylene glycol-based electrolyte to create a titanium oxide nanotubular surface. Afterward, the surface was covered by sputtering with silver 5 nm film, and the tops of the nanotubes were capped using laser treatment, resulting in an appearance of silver nanoparticles (AgNPs) of around 30 nm in diameter...
-
SnO2 nanoparticles embedded onto MoS2 nanoflakes - An efficient catalyst for photodegradation of methylene blue and photoreduction of hexavalent chromium
PublikacjaIn this work, a molybdenum disulfide/tin oxide (MoS2/SnO2) composite was successfully prepared via a hydrothermal method. The MoS2/SnO2 composite was used as a photocatalyst for photoreduction of hexavalent chromium and photodecomposition of methylene blue. It exhibited higher photocatalytic performance under simulated solar light irradiation than MoS2 itself. The obtained material was characterized by several spectroscopic and...
-
Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst
PublikacjaIn the present study, susceptibility to photocatalytic degradation of etodolac, 1,8-diethyl-1,3,4,9 – tetrahydro pyran - [3,4-b] indole-1-acetic acid, which is a non-steroidal anti-inflammatory drug frequently detected in an aqueous environment, was for the first time investigated. The obtained p-type TiO2-based photocatalyst coupled with zinc ferrite nanoparticles in a core-shell structure improves the separation and recovery...
-
Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers
PublikacjaComposites with differently shaped micro- and nanofillers show various, unique thermal, and physicochemical properties when mixed with carefully chosen polymer matrix. Selected composition holds strategic value in achieving desired properties that is biodegradability, thermoelectric conductivity, and shape memory for organic coating. The main aim of this work is to briefly examine structural changes after reaching percolation...
-
MnWO4/reduced graphene oxide-based electrochemical sensing platform for simultaneous detection of catechol and resorcinol
Publikacjan this study, a novel electrochemical sensor for accurate and sensitive catechol determination was demonstrated employing a screen-printed graphite electrode (SPGE) modified with MnWO4/reduced graphene oxide (MnWO4/rGO) nanocomposite. The MnWO4/rGO nanocomposite has been successfully prepared by using hydrothermal technique, and it was then characterized using several microscopic and spectroscopic methods (XRD, FE-SEM, and EDS)....
-
Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers
PublikacjaComposites with differently shaped micro- and nanofillers show various, unique thermal, and physicochemical properties when mixed with carefully chosen polymer matrix. Selected composition holds strategic value in achieving desired properties that is biodegradability, thermoelectric conductivity, and shape memory for organic coating. The main aim of this work is to briefly examine structural changes after reaching percolation threshold...
-
Electrically Conductive Carbon‐based (Bio)‐nanomaterials for Cardiac Tissue Engineering
PublikacjaA proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials...
-
Emerging anticancer activity of candidal glucoseamine-6-phosphate synthase inhibitors upon nanoparticle-mediated delivery
PublikacjaNumerous glutamine analogues have been reported as irreversible inhibitors of the glucosamine-6-phosphate (GlcN-6-P) synthase in pathogenic Candida albicans in the last 3.5 decades. Among the reported inhibitors, the most effective N3-(4-methoxyfumaroyl)-L-2,3- diaminopropanoic acid (FMDP) has been extensively studied in order to develop its more active analogues. Several peptide−FMDP conjugates were tested to deliver FMDP to its...
-
Organic pollutants photodegradation increment with use of TiO2 nanotubes decorated with transition metals after pulsed laser treatment
PublikacjaAmong various titanium(IV) oxide (TiO2, titania) structures, 1D nanotubes (TiO2 NTs) produced during the two-electrode anodization process, are extensively utilized in sensors or supercapacitors as well as in photo(electro)catalytic water splitting. However, due to wide bandgap and fast electron-hole recombination additional modifications, mostly concerned on materials surface, are required. According to the recent research, TiO2...
-
Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core–shell photocatalysts with UV/Vis light activity and magnetic separability
PublikacjaTitanium(IV) oxide is one of the most widely investigated photocatalysts. However, separation of nano-sized particulate titania might result in profitless technologies for commercial applications. Additionally, bare titania is almost inactive under the Vis range of solar spectrum due to its wide bandgap. Therefore, the present study aims to prepare novel coreinterlayer- shell TiO2 magnetic photocatalysts modified with metal nanoparticles...
-
PREPARATION AND CHARACTERIZATION OF CoFe2O4/TiO2-PANI HYBRID NANOCOMPOSITE WITH MAGNETIC AND PHOYOCATALYTIC ACTIVITY
PublikacjaHybrid nanocomposites consisting of inorganic component and organic conducting polymer are promising materials, which can be applied in heterogeneous photocatalysis. Titanium(IV) oxide is widely used photocatalysts due to its non-toxicity, low cost and chemical stability. The main disadvantage of TiO2 is low photocatalytic activity under visible light. Conducting polymers, also known as conjugated polymers are polymer materials...
-
Magnetic photocatalysts for water treatment
PublikacjaThe concept of magnetic photocatalysts with separation function requires ferromagnetic material with high magnetic susceptibility to an external magnetic field to enable recycling of composite nanoparticles. Currently, much attention is devoted to functionalization of photocatalyst using MFe2O3, where M =Fe, Zn, Co, Mn. However direct contact between photocatalyst and magnetic iron oxide particles leads to photodissolution of iron...
-
AlP compound and P-doping for promotion of electrocatalytic activity of N-doped carbon derived from metal-organic framework
PublikacjaWater splitting plays a key role in future fuels, where two processes occur - the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Nitrogen-doped carbon derived from...