Wyniki wyszukiwania dla: artificial gene regulatory networks
-
Multimodal Approach For Polysensory Stimulation And Diagnosis Of Subjects With Severe Communication Disorders
Publikacjais evaluated on 9 patients, data analysis methods are described, and experiments of correlating Glasgow Coma Scale with extracted features describing subjects performance in therapeutic exercises exploiting EEG and eyetracker are presented. Performance metrics are proposed, and k-means clusters used to define concepts for mental states related to EEG and eyetracking activity. Finally, it is shown that the strongest correlations...
-
Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building
PublikacjaTraffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublikacjaLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Marine and Cosmic Inspirations for AI Algorithms
PublikacjaArtificial Intelligence (AI) is a scientific area that currently sees an enormous growth. Various new algorithms and methods are developed and many of them meets practical, successful applications. Authors of new algorithms draw different inspirations. Probably the most common one is the nature. For example, Artificial Neural Networks were inspired by the structure of human brain and nervous system while the classic Genetic Algorithm...
-
Early warning models against bankruptcy risk for Central European and Latin American enterprises
PublikacjaThis article is devoted to the issue of forecasting the bankruptcy risk of enterprises in Latin America and Central Europe. The author has used statistical and soft computing methods to program the prediction models. It compares the effectiveness of twelve different early warningmodels for forecasting the bankruptcy risk of companies. In the research conducted, the author used data on 185 companies listed on the Warsaw Stock Exchange...
-
Communication as a Factor Limiting University-Business Cooperation
PublikacjaObjective - Despite the broad extent of the scientific activity dealing with university-business cooperation, Poland has yet to develop a satisfactory cooperation strategy that takes business needs into account. This issue is still relevant due to the need for continuous improvement and resulting benefits aimed at improving enterprise competitiveness. Methodology/Technique - Authors of this article attempt to select an overriding...
-
Blood Pressure Estimation Based on Blood Flow, ECG and Respiratory Signals Using Recurrent Neural Networks
PublikacjaThe estimation of systolic and diastolic blood pressure using artificial neural network is considered in the paper. The blood pressure values are estimated using pulse arrival time, and additionally RR intervals of ECG signal together with respiration signal. A single layer recurrent neural network with hyperbolic tangent activation function was used. The average blood pressure estimation error for the data obtained from 21 subjects...
-
Automatic Rhythm Retrieval from Musical Files
PublikacjaThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction
PublikacjaMobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublikacjaMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
The conducted immunity test of a power supply unit in the frequency range from 19 MHz to 26 MHz for the RF voltage level of 3 V
Dane BadawczeThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the DF1723003TC NDN power supply unit. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 19 MHz to 26 MHz were...
-
The conducted immunity test of a power supply unit in the frequency range from 19 MHz to 26 MHz for the RF voltage level of 1 V
Dane BadawczeThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the DF1723003TC NDN power supply unit. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 19 MHz to 26 MHz were...
-
The conducted immunity test of a power supply unit in the frequency range from 19 MHz to 26 MHz for the RF voltage level of 10 V
Dane BadawczeThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the DF1723003TC NDN power supply unit. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 19 MHz to 26 MHz were...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublikacjaThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
Society 4.0: Issues, Challenges, Approaches, and Enabling Technologies
PublikacjaThis guest edition of Cybernetics and Systems is a broadening continuation of our last year edition titled “Intelligence Augmentation and Amplification: Approaches, Tools, and Case Studies”. This time we cover research perspective extending towards what is known as Society 4.0. Bob de Vit brought the concept of Society 4.0 to life in his book “Society 4.0 – resolving eight key issues to build a citizens society”. From the Systems...
-
Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning
PublikacjaThe paper presented the methodology for the construction of a soft sensor used for activated sludge bulking identification. Devising such solutions fits within the current trends and development of a smart system and infrastructure within smart cities. In order to optimize the selection of the data-mining method depending on the data collected within a wastewater treatment plant (WWTP), a number of methods were considered, including:...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
A comparative analysis of the effectiveness of corporate bankruptcy prediction models based on financial ratios: Evidence from Colombia, 2008 to 2015
PublikacjaLogit and discriminant analyses have been used for corporate bankruptcy prediction in several studies since the last century. In recent years there have been dozens of studies comparing the several models available, including the ones mentioned above and also probit, artificial neural networks, support vector machines, among others. For the first time for Colombia, this paper presents a comparative analysis of the effectiveness...
-
A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels
PublikacjaBiodiesel has been emerging as a potential and promising biofuel for the strategy of reducing toxic emissions and improving engine performance. Computational methods aiming to offer numerical solutions were inevitable as a study methodology which was sometimes considered the only practical method. Artificial neural networks (ANN) were data-processing systems, which were used to tackle many issues in engineering and science, especially...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Prognozowanie wpływu drgań komunikacyjnych na budynki mieszkalne za pomocą sztucznych sieci neuronowych i maszyn wektorów wspierających
PublikacjaDrgania komunikacyjne mogą stanowić duże obciążenie eksploatacyjne budynku, powodując zarysowania i spękania tynków, odpadanie wypraw, zarysowania konstrukcji, pękanie elementów konstrukcji lub nawet zawalenie się budynku. Pomiary drgań na rzeczywistych konstrukcjach są pracochłonne i kosztowne, a co ważne nie w każdym przypadku są one uzasadnione. Celem pracy jest analiza autorskiego algorytmu, dzięki któremu z dużym prawdopodobieństwem...
-
Automatic Singing Voice Recognition EmployingNeural Networks and Rough Sets
PublikacjaCelem badań jest automatyczne rozpoznawanie głosów śpiewaczych w kategorii rodzaju i jakości technicznej śpiewu. W artykule opisano stworzoną bazę danych głosów, która zawiera próbki głosu śpiewaków profesjonalnych i amatorskich. W dalszej części opisano parametry zdefiniowane w oparciu o zjawiska biomechaniczne w narządzie głosu podczas śpiewania. W oparciu o stworzone macierze parametrów wytrenowano i porównano automatyczne klasyfikatory...
-
Damage Detection Strategies in Structural Health Monitoring of Overhead Power Transmission System
PublikacjaOverhead power transmission lines, their supporting towers, insulators and other elements create a highly distributed system that is vulnerable to damage. Typical damage scenarios cover cracking of foundation, breakage of insulators, loosening of rivets, as well as cracking and breakage of lines. Such scenarios may result from various factors: groundings, lightning strikes, floods, earthquakes, aeolian vibrations, conductors galloping,...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublikacjaElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublikacjaImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan
PublikacjaResearch background: The global financial crisis from 2007 to 2012, the COVID-19 pandemic, and the current war in Ukraine have dramatically increased the risk of consumer bankruptcies worldwide. All three crises negatively impact the financial situation of households due to increased interest rates, inflation rates, volatile exchange rates, and other significant macroeconomic factors. Financial difficulties may arise when the...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms
PublikacjaThe study targeted towards drying of cantaloupe slices with various thicknesses in a microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and 540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were exploited to investigate energy and exergy indices of...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublikacjaAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublikacjaOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Social media for e-learning of citizens in smart city
PublikacjaThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
Development of an AI-based audiogram classification method for patient referral
PublikacjaHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Numerical Modelling for Prediction of Compression Index from Soil Index Properties in Jimma town, Ethiopia
PublikacjaIn this study, correlations are developed to predict compression index (Cc) from index parameters so that one can be able to model Jimma soils with compression index using simple laboratory tests. Undisturbed and disturbed soil samples from twelve different locations in Jimma town were collected. Laboratory tests like specific gravity, grain size analysis, Atterberg limit, and one-dimensional consolidation test for a total of twenty-four...
-
System for automatic singing voice recognition
PublikacjaW artykule przedstawiono system automatycznego rozpoznawania jakości i typu głosu śpiewaczego. Przedstawiono bazę danych oraz zaimplementowane parametry. Algorytmem decyzyjnym jest algorytm sztucznych sieci neuronowych. Wytrenowany system decyzyjny osiąga skuteczność ok. 90% w obydwu kategoriach rozpoznawania. Dodatkowo wykazano przy pomocy metod statystycznych, że wyniki działania systemu automatycznej oceny jakości technicznej...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublikacjaPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction
PublikacjaNitrogen dioxide (NO2) is a prevalent air pollutant, particularly abundant in densely populated urban regions. Given its harmful impact on health and the environment, precise real-time monitoring of NO2 concentration is crucial, particularly for devising and executing risk mitigation strategies. However, achieving precise measurements of NO2 is challenging due to the need for expensive and cumbersome equipment. This has spurred...
-
Sathwik Prathapagiri
OsobySathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublikacjaThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION
PublikacjaObjective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...
-
Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets
PublikacjaArtificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...