Wyniki wyszukiwania dla: BORON-DOPED CARBON NANOWALLS
-
Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls
PublikacjaTwo different type of electrodes, boron-doped diamond electrode (BDD) and boron-doped carbon nanowalls (B:CNW) electrode, were used for the electrochemical determination of paracetamol using the cyclic voltammetry and the differential pulse voltammetry in phosphate buffered saline, pH = 7.0. The main advantage of these electrodes is their utilization without any additional modification of the electrode surface. The peak current...
-
Tailoring Electro/Optical Properties of Transparent Boron-Doped Carbon Nanowalls Grown on Quartz
PublikacjaCarbon nanowalls (CNWs) have attracted much attention for numerous applications in electrical devices because of their peculiar structural characteristics. However, it is possible to set synthesis parameters to vary the electrical and optical properties of such CNWs. In this paper, we demonstrate the direct growth of highly transparent boron-doped nanowalls (B-CNWs) on optical grade fused quartz. The effect of growth temperature...
-
Multi-pathway mechanism of polydopamine film formation at vertically aligned diamondised boron-doped carbon nanowalls
PublikacjaBoron-doped carbon nanowall (B:CNW) electrodes were used as a platform for studying the electropolymerisation of dopamine. Due to the unique properties of B:CNW, including the fast charge-transfer kinetics and high surface conductivity, a high degree of reversibility of redox reactions was achieved. Three separated redox peaks were observed on voltammograms and attributed to three fundamental reactions in the dopamine polymerisation...
-
Diamond-Phase (Sp3-C) Rich Boron-Doped Carbon Nanowalls (Sp2-C): A Physico-Chemical And Electrochemical Properties
PublikacjaThe growth of B-CNW with different boron doping levels controlled by the [B]/[C] ratio in plasma, and the influence of boron on the obtained material’s structure, surface morphology, electrical properties and electrochemical parameters, such as -ΔE and k°, were investigated. The fabricated boron-doped carbon nanowalls exhibit activity towards ferricyanide redox couple, reaching the peak separation value of only 85 mV. The flatband...
-
Boron-doped carbon nanowalls for fast and direct detection of cytochrome C and ricin by matrix-free laser desorption/ionization mass spectrometry
PublikacjaDetecting proteins via surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) method is still highly challenging, and only few examples of nanomaterials have been demonstrated to perform such detection so far. In this study, carbon nanowalls (CNWs), vertically aligned graphene sheet-based materials, presenting specific morphology, dimensions, and boron doping levels have shown improved performances for both qualitative...
-
Scanning electron microscopy (SEM) images of the boron-doped carbon nanowalls surfaces
Dane BadawczeThe dataset contains the scanning electron micrographs (SEM), revealing the surface morphology of boron-doped carbon nanowalls electrodes on silicon substrates. The surface is characterized by nano-walled structures. The obtained electrodes were doped with boron at the level of [B]/[C] = 5000ppm in the gas atmosphere during the synthesis.
-
Scanning electron microscopy (SEM) images of the boron-doped carbon nanowalls surfaces
Dane BadawczeThe dataset contains the scanning electron micrographs (SEM), revealing the surface morphology of boron-doped carbon nanowalls electrodes on silicon substrates. The surface is characterized by nano-walled structures. The obtained electrodes were doped with boron at the level of [B]/[C] = 2000ppm in the gas atmosphere during the synthesis.
-
Development of novel (BiO)2OHCl/BiOBr enriched with boron doped-carbon nanowalls for photocatalytic cytostatic drug degradation: Assessing photocatalytic process utilization in environmental condition
PublikacjaIn this work, a series of novel (BiO)2OHCl/BiOBr-x%B:DGNW (x = 0%, 1%, 1.5%, 2%) composites with different content of boron-doped diamond/graphene nanowalls (B:DGNW) were fabricated by simple solvothermal synthesis. A boron-doped diamond/graphene nanowalls (B:DGNW) were prepared by CVD method. A series of analyses: XRD, XPS, SEM, and TEM showed that the photocatalyst (BiO)2OHCl/BiOBr-x%B:DGNW with a “flower-like” morphology was...
-
SEM micrographs of diamond-phase (sp3-C) rich boron-doped carbon nanowalls (sp2-C)
Dane BadawczeThis dataset contains the Scanning Electron Microscopy (SEM) micrographs taken for rich boron-doped carbon nanowalls structures, with different boron addition during the synthesis process and different CVD synthesis duration. The [B]/[C] ratios in the plasma were set to 0k, 1.2k, 2k and 5k ppm. The time of growth was ranging between 4 and 9 hours. This...
-
3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode
PublikacjaSynthesis of stable hybrid carbon nanostructure for high-performance supercapacitor electrode with long life-cycle for electronic and energy storage devices is a real challenge. Here, we present a one-step synthesis method to produce conductive boron-doped hybrid carbon nanowalls (HCNWs), where sp2-bonded graphene has been integrated with and over a three-dimensional curved wall-like network of sp3-bonded diamond. The spectroscopic...
-
Stable Field Electron Emission and Plasma Illumination from Boron and Nitrogen Co‐Doped Edge‐Rich Diamond‐Enhanced Carbon Nanowalls
PublikacjaSuperior field electron emission (FEE) characteristics are achieved in edge-rich diamond-enhanced carbon nanowalls (D-ECNWs) grown in a single-step chemical vapor deposition process co-doped with boron and nitrogen. The structure consists of sharp, highly conductive graphene edges supplied by a solid, diamond-rich bottom. The Raman and transmission electron microscopy studies reveal a hybrid nature of sp3-diamond and sp2-graphene...
-
Boron doped carbon nanotubes via ceramic catalysts
Publikacja -
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublikacjaCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
PublikacjaIn this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source
PublikacjaElectron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach envisioning a...
-
Electronic structure and optical properties of boron doped single-wall carbon nanotubes
Publikacja -
Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode
PublikacjaDirect synthesis of nano-structured carbon hybrid consisting of vertically aligned carbon nanograss on top of boron-doped nanocrystalline diamond is demonstrated and the carbon hybrid is further applied as an electrode material for the fabrication of supercapacitor. The hybrid film combines the dual advantages of sp2 (carbon nanograss) and sp3 (nanocrystalline diamond) bonded carbon, possessing not only the excellent electrical...
-
Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond
Publikacja.A boron-doped diamond (BDD) sensor is proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Boron-doped diamond thin films, acting as active sensors, were deposited on both silicon wafer and glassy carbon (GC) substrates by microwave plasma assisted chemical vapour deposition. SEM micrographs showed that BDD–Si displays triangle-faceted crystallites ca. 0.5–3 μm in size, while BDD–GC...
-
Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond
Publikacja -
Scanning electron microscopy (SEM) images of the boron-dopied carbon nanowalls surfaces
Dane BadawczeThe dataset contains the scanning electron micrographs (SEM), revealing the surface morphology of boron-doped carbon nanowalls electrodes on silicon substrates. The surface is characterized by nano-walled structures. The obtained electrodes were doped with boron at the level of [B]/[C] = 1200ppm in the gas atmosphere during the synthesis.
-
Enhanced electrochemical activity of boron-doped nanocarbon functionalized reticulated vitreous carbon structures for water treatment applications
PublikacjaAn extraordinary charge transfer kinetics and chemical stability make a boron-doped diamond (BDD) a prom- ising material for electrochemical applications including wastewater treatment. Yet, with flat geometrical sur- faces its scaling options are limited. In this study, the reticulated Vitreous Carbon (RVC) served as a substrate for boron-doped diamondized nanocarbons (BDNC) film growth resulting with complex heterogeneity carbon structures...
-
SEM micrographs of boron-doped nanocrystalline diamond-carbon nanospikes
Dane BadawczeThis dataset contains the Scanning Electron Microscopy (SEM) micrographs taken for rich boron-doped carbon crystalline nanospikes/nanograss structures, at different magnifications, encoded in the labels of the images. The micrographs were made using Hitachi S-3400N SEM microscope in secondary electron mode under 20 kV accelerating voltage. No additional...
-
Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications
PublikacjaThis paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials’ architecture and the receptor immobilisation procedures. The study...
-
Highly selective impedimetric determination of Haemophilus influenzae protein D using maze-like boron-doped carbon nanowall electrodes
PublikacjaThis study reports a novel impedimetric immunosensor for protein D detection in purified and bacterial (Haemophilus influenzae, Hi) samples. The detection was based on antigen recognition by anti-protein D antibodies (apD) immobilised at the maze-like boron-doped carbon nanowall electrodes (B:CNW). The B:CNW electrodes were synthesised, and their surface was characterised by scanning electron microscopy (SEM) and X-ray photoelectron...
-
Direct determination of paraquat herbicide by square-wave voltammetry by two-step transfer mechanism at heterogeneous boron-doped carbon nanowall electrodes
PublikacjaBoron-doped carbon nanowalls (B:CNW) versus boron-doped diamond (BDD) materials were investigated for the effective electrochemical detection of highly toxic herbicide paraquat (PQ). Depending on the surface morphology and functional groups of BDD and B:CNWs, the electrochemical absorption and detection of the target analyte PQ revealed different detection mechanisms. The surface absorption mechanism was mainly observed for BDD,...
-
Topography studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Dane BadawczeThis dataset contains topography examination of SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Electrochemical studies for screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Dane BadawczeThis dataset contains electrochemical examination of SPCE paste and SPCE containing boron-doped diamond BDD foils. The studies include kinetics analyses with cyclic voltammetry and electrochemical impedance spectroscopy with different redox probes: hexacyanoferrate(III) and Hexaammineruthenium(III) and potentiostatic open circuit potential at different...
-
Chemical and structural studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Dane BadawczeThis dataset contains chemical analyses and structural studies by XPS and Raman spectroscopy, carried out for SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points for XPS analysis mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation
PublikacjaThe 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel...
-
Performance of Haemophilus influenzae impedimetric biosensors based on screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Dane BadawczeThis dataset contains electrochemical impedance spectroscopy studies of SPCE electrodes containing boron-doped diamond BDD foils and functionalized towards detection of Protein D and Haemophilus influenzae.
-
Carbon nanowalls: A new versatile graphene based interface for laser desorption/ionization-mass spectrometry detection of small compounds in real samples.
PublikacjaCarbon nanowalls, vertically aligned graphene nanosheets, attract attention owing to their tunable band-gap, high conductivity, high mechanical robustness, high optical absorbance and other remarkable properties. In this paper, we report for the first time, the use of hydrophobic boron-doped carbon nanowalls (CNWs) for laser desorption/ionization of small compounds and their subsequent detection by mass spectrometry (LDI-MS). The...
-
Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration
PublikacjaThe boron-doped diamond (BDD) electrodes with different boron concentrations have been tested as electrode material for sulphamerazine (SRM) oxidation in water solution. An investigation of the electrode morphology and molecular structure was carried out using high resolution scanning electron microscopy (SEM) and Raman spectroscopy. Electrochemical results showed clearly that the kinetics and efficiency of SRM oxidation were dependent...
-
Impedimetric sensing of α-amino acids driven by micro-patterned 1,8-Diazafluoren-9-one into titania- boron- doped maze-like nanocarbons
PublikacjaThe development of impedimetric, non-faradaic label-free sensors for the detection of α-amino acids constitutes a trailblazing technology for the fast and inexpensive quantification of such biomarkers. Since α-amino acids, such as glycine and sarcosine, are basic constituents in biological processes, a variation in their concentration may be an indicator of cardiovascular diseases and metabolic disorders or neurological conditions....
-
Structural and electrochemical heterogeneities of boron-doped diamond surfaces
PublikacjaThis brief review is focussed on the recent progress in studies of the heterogeneous electrochemical behaviour of various boron-doped materials extending from zero-dimensional particles through polycrystalline or nanostructured three-dimensional surfaces. A boron-doped diamond reveals large heterogeneities induced by numerous factors, inter alia multi-faceted crystallinity, inhomogeneous boron concentration, sp2/sp3-carbon ratio,...
-
sp2-rich dendrite-like carbon nanowalls as effective electrode for environmental monitoring of explosive nitroaromatic
PublikacjaNitroaromatic compounds are commonly used explosive materials that pose a risk to human health and ecosystems due to their acute toxicity and carcinogenicity. Nitroaromatics have numerous pathways into the environment via discarded munitions (e.g. into the Baltic Sea after World War II), after use in mining operations, and in industrial run-off from factories producing these compounds (which are produced across the world to date)....
-
Unraveling the role of boron dimers in the electrical anisotropy and superconductivity in boron-doped diamond
PublikacjaWe use quantum mechanics (QM) to determine the states formed by B dopants in diamond. We find that isolated B sites prefer to form BB dimers and that the dimers pair up to form tetramers (BBCBB) that prefer to aggregate parallel to the (111) surface in the <110> direction, one double layer below the H-terminated surface double layer. These tetramers lead to metallic character (Mott metal Insulator Transition) with holes in the...
-
Thermal stability analysis of poly(lactic acid)-carbon black-nanodiamond composite
Dane BadawczeThis dataset contains thermal stability tests carried out on new 3D printing-dedicated composites with poly-lactic acid (PLA), carbon black (CB) and nanodiamond fillers. Two types of nanodiamonds were studied: detonation nanodiamonds (DND) and boron-doped carbon nanowalls (BCNW). The investigated techniques include: thermogravimetric analysis (TGA)...
-
DFT studies of the refractive index of boron-doped diamond
PublikacjaThe density functional theory is one of the optimal solutions in calculation of optical properties of materials on the quantum scale. In this paper, we have investigated the refractive index of a boron-doped diamond structure with the usage of Atomistic Toolkit software from Synopsys. During this study, various methods and pseudopotentials were checked to obtain an optimal performanceaccuracy method for calculation of such materials....
-
In-situ optical diagnostics of boron-doped diamond films growth
PublikacjaInterferometry is a desirable method for in-situ measurement of thin, dielectric film growth, as it don't modify conditions of film deposition. Here we present interferometrical measurements of thickness of doped diamond films during Chemical Vapor Deposition (CVD) process. For this purpose we used a semiconductor laser with a 405nm wavelength. Additional ex-situ measurement using spectral interferometry and ellipsometry...
-
Biophotonic low-coherence sensors with boron-doped diamond thin layer
PublikacjaLow-coherence sensors using Fabry-Perot interferometers are finding new applications in biophotonic sensing, especially due to the rapid technological advances in the development of new materials. In this paper we discuss the possibility of using boron-doped nanodiamond layers to protect mirror in a Fabry-Perot interferometer. A low-coherence sensor using Fabry-Perot interferometer with a boron-doped nanodiamond (B-NCD) thin protective...
-
Tailoring Diffusional Fields in Zwitterion/Dopamine Copolymer Electropolymerized at Carbon Nanowalls for Sensitive Recognition of Neurotransmitters
PublikacjaThe importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls...
-
Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes
PublikacjaFabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. Nanocrystalline boron doped -diamond (B-NCD) films were deposited using Microwave Plasma Assisted Chemical Vapour Deposition (MW PA CVD) method. The variation of B-NCD morphology, structure and optical parameters were particularly investigated. The use of truncated...
-
Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures
PublikacjaThe synthesis of novel tunable carbon-based nanostructure represented a pivotal point to enhance the efficiency of existing photocatalysts and to extend their applicability to a wider number of sustainable processes. In this letter, we describe a transparent photocatalytic heterostructure by growing boron-doped carbon nanowalls (B-CNWs) on quartz, followed by a simple TiO2 sol-gel deposition. The effect on the thickness and boron-doping...
-
Studies on optical transmittance of boron-doped nanocrystalline diamond films
PublikacjaThickness is one of the most important parameters in many applications using thin layers. This article describes thickness determination of a boron-doped nanocrystalline diamond (NCD) grown on fused silica glass. A spectroscopic measurement system has been used. A high refractive index (2.3 at 550nm) was achieved for NCD films. The thickness of NCD samples has been determined from the transmission spectrum.
-
Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration
Publikacja -
Local impedance imaging of boron-doped polycrystalline diamond thin films
PublikacjaLocal impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 1016 to 2 × 1021 atoms cm−3. The BDD films displayed microcrystalline structure,...
-
Rheology studies of poly(lactic acid)-carbon black-nanodiamond composites
Dane BadawczeThis dataset contains rheology measurements carried out on new 3D printing-dedicated composites with poly-lactic acid (PLA), carbon black (CB) and nanodiamond fillers. Two types of nanodiamonds were studied: detonation nanodiamonds (DND) and boron-doped carbon nanowalls (BCNW). The investigated techniques was performed by melt mass-flow rates (MFR)....
-
Mechanical studies of poly(lactic acid)-carbon black-nanodiamond composites
Dane BadawczeThis dataset contains mechanical tests carried out on new 3D printing-dedicated composites with poly-lactic acid (PLA), carbon black (CB) and nanodiamond fillers. Two types of nanodiamonds were studied: detonation nanodiamonds (DND) and boron-doped carbon nanowalls (BCNW). The investigated techniques was dynamic mechanical analysis (DMA). The measurements...
-
Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration
PublikacjaThe introduction of nanotechnology seems to be an imperative factor to intensify the synergic effects of electrocatalytic materials to produce strong oxidant species or to increase the active sites on their surfaces as well as to enhance the conversion yield in a fuel cell, high-added value products, electrolytic treatment for environmental protection or the detection limit in electroanalysis. Recently, a new type of 3D-diamond...
-
Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays
PublikacjaDoping of TiO2 nanotube arrays with boron was realized via electrochemical treatment of as-anodized titania immersed in electrolyte containing boric acid. The photoactivity of doped and pure titania was examined by means of photoelectrochemical and photocatalytic response under UV-vis irradiation. The results showed that photocurrent density of B-TNTs is remarkably higher (7.5 times) than density of pure TiO2 nanotube arrays. Furthermore,...