Wyniki wyszukiwania dla: electronic materials
-
Electronic Materials Letters
Czasopisma -
Advanced Electronic Materials
Czasopisma -
JOURNAL OF ELECTRONIC MATERIALS
Czasopisma -
Transactions on Electrical and Electronic Materials
Czasopisma -
ACS Applied Electronic Materials
Czasopisma -
INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS
Czasopisma -
Qualitative characteristics and comparison of volatile fraction of vodkas made from different botanical materials by comprehensive two-dimensional gas chromatography and the electronic nose based on the technology of ultra-fast gas chromatography
PublikacjaBACKGROUND Vodka is a spirit-based beverage made from ethyl alcohol of agricultural origin. At present, increasingly more vodka brands have labels that specify the botanical origin of the product. Until now, the techniques for distinguishing between vodkas of different botanical origin have been costly, time-consuming and insufficient for making a distinction between vodka produced from similar raw materials. Therefore, it is...
-
Structure and thermoelectric properties of Te/Ag/Ge/Sb (TAGS) materials obtained by reduction of melted oxide substrates
PublikacjaThe Ge0.77Ag0.1Sb0.13Te1alloy was fabricated by a novel two step route. For that purpose firstly the oxide reagents were melted at high temperature and quenched into pellets. After that pellets were milled to the powder and then reduced in hydrogen at various temperatures and for various periods of time. Energy dispersive X-ray analysis indicated the possibility of successful fabrication of stoichiometric thermoelectric materials...
-
Enhancement of the Magnetoresistance in the Mobility‐Engineered Compensated Metal Pt 5 P 2
PublikacjaThe magnetoresistance (MR) in nonmagnetic materials continues to be a fertile research area in materials science. The search for giant, positive MR has been limited to a rather small window of materials such as high-mobility semimetals in single-crystalline form. Here, the observation of a very large positive MR in metallic Pt5P2 in polycrystalline form is reported. The observations reveal that improvement of the crystallinity...
-
Deposition and Electrical and Structural Properties of La0.6Sr0.4CoO3 Thin Films for Application in High-Temperature Electrochemical Cells
PublikacjaLow-temperature deposition of electroceramic thin films allows the construction of new devices and their integration with existing large-scale fabrication methods. Developing a suitable low-cost deposition method is important to further advance the development of microdevices. In this work, we deposited a 1-lm-thick La0.6Sr0.4CoO3d (LSC) perovskite with high electrical conductivity on sapphire substrates at 400C and analyzed its...
-
Design Optimization of an Anisotropic Magnetoresistance Sensor for Detection of Magnetic Nanoparticles
Publikacja -
Room‐Temperature Multiferroicity and Magnetization Dynamics in Fe/BTO/LSMO Tunnel Junction
Publikacja -
Nitrogen/Oxygen Enriched Hierarchical Porous Carbons Derived from Waste Peanut Shells Boosting Performance of Supercapacitors
Publikacja -
Effects of Na+, K+ and B3+ Substitutions on the Electrical Properties of La10Si6O27 Ceramics
PublikacjaDoping of Na and K at La sites and of B at Si site in La10Si6O27 with oxyapatite structure and fabrication of their ceramics were made by the solid-state reaction method. It was found that partial substitution of Na+ and K+ on La sites decreased the sinterability of the La10Si6O27 based ceramics, whereas partial substitution of B3+ on the Si site improved the sinterability. Na+ and K+ substitutions in La10−xNaxSi6O27−x and La10−xKxSi6O27−x...
-
Asynchronous Charge Carrier Injection in Perovskite Light-Emitting Transistors
PublikacjaUnbalanced mobility and injection of charge carriers in metal-halide perovskite light-emitting devices pose severe limitations to the efficiency and response time of the electroluminescence. Modulation of gate bias in methylammonium lead iodide light-emitting transistors has proven effective in increasing the brightness of light emission up to MHz frequencies. In this work, a new approach is developed to improve charge carrier...
-
High-Entropy Perovskites as Multifunctional Metal Oxide Semiconductors: Synthesis and Characterization of (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3
Publikacja -
Michał Sobaszek dr hab. inż.
OsobyMichał Sobaszek was born in Gdansk in 1984. In the summer of 2009, he received a Master degree in Materials Engineering at Gdansk University of Technology. Currently, he is an Assistant Professor at the Faculty of Electronics at the Gdańsk University of Technology. In 2018 he was honoured with the scholarship for the outstanding young researches by the Minister of Science and Higher Education of Poland. For more than 7 years, he...
-
NEW ORGANIC MATERIALS FOR PHOTOVOLTAICS
PublikacjaThis report presents the results of investigations carried out for polymer- and low-weightmolecular materials prepared in the form of thin films by various methods, namely the thermalvacuum evaporation and chemical vapour deposition. The influence of the technologicalconditions on the structure, surface morphology, and electronic properties of selected organic thinfilms, including polyazomethines, phthalocyanines, and perylene...
-
Effect of Polymerization Statistics on the Electronic Properties of Copolymers for Organic Photovoltaics
PublikacjaStatistical block copolymers, composed of donor (D) and acceptor (A) blocks, are a novel type of material for organic photovoltaics (OPVs) devices. In particular a new series of polymers based on PBTZT-stat-BDTT-8, recently developed by Merck, offers high solubility in different solvents, and a high power conversion efficiency (PCE) in different device architectures. Although it is known that the electronic properties of these...
-
Structural and electronic properties of diamond-composed heterostructures
PublikacjaDiamond is a promising material for 21st century electronics due to its high thermal and electronic conductivity, biocompatibility, chemical stability, high wear resistance, and possibility of doping. However, the semiconductor properties of diamond, especially free-standing films, have not been fully explored. Nor have their integration with polymers and fragile materials and their applications as electronic components. In this...
-
Investigating BiMeVOx compounds as potential photoelectrochemical and electrochemical materials for renewable hydrogen production
PublikacjaIn this study, BiMeVOx compounds (where Me: Co, Mo, Ce, Zr) were synthesized and characterized as potential photoelectrochemical materials for solar water splitting, the hydrogen evolution reaction (HER), and oxygen evolution reaction (OER). The analysis confirmed the successful formation of phase BiMeVOx compounds with the desired crystal structure. Among the tested materials, BiCoVOx(800) showed the highest photocurrent density...
-
Physical properties and electronic structure of La3Co and La3Ni intermetallic superconductors
PublikacjaLa3Co and La3Ni are reported superconductors with transition temperatures of 4.5 and 6 K, respectively. Here, we reinvestigate the physical properties of these two intermetallic compounds with magnetic susceptibility χ, specific heat Cp and electrical resistivity ρ measurements down to 1.9 K. Although bulk superconductivity is confirmed in La3Co, as observed previously, only a trace of it is found in La3Ni, indicating that the...
-
Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20
PublikacjaWe report an investigation of the combined structural and electronic properties of the bronze Na1.5(PO2)4(WO3)20. Its low-dimensional structure and possible large reconstruction of the Fermi surface due to charge density wave instability make this bulk material a natural superlattice with a reduced number of carriers and Fermi energy. Signatures of multilayered two-dimensional (2D) electron weak localization are consequently reported,...
-
Noise in electrical double-layer capacitors (EDLCs)
PublikacjaWe present methods and problems of noise measurements in electrical double-layer capacitors (EDLC). Detailed noise equivalent electronic circuit is considered, and two possible ways of observations of random processes generated in the EDLCs structures are studied. We conclude that noise is a useful tool for characterization of the EDLC structures and their state-of-health, as in other materials and electronic devices. Eventual,...
-
Tomasz Klimczuk prof. dr hab. inż.
OsobyStopnie naukowe i zawodowe dr hab. (2008) Wydz. FTiMS PG dr (2001) Wydz. FTiMS PG inż. (1997) Wydz. ZiE PG mgr inż. (1995 )Wydz. FTiMS PG Zatrudnienie grudzień 2013 – do chwili obcecnejprofesor nadzwyczajny na Wydziale Fizyki Technicznej i Matematyki Stosowanej Politechniki Gdańskiej wrzesień 2012 – grudzień 2013 adiunkt na Wydziale Fizyki Technicznej i Matematyki Stosowanej Politechniki Gdańskiej wrzesień 2009 – sierpień 2012grant-holder...
-
Singlet Exciton Diffusion in Vacuum-Evaporated Films of Amine-Based Materials as Studied by Photocurrent and Photoluminescence Quenching Methods
PublikacjaThe singlet exciton diffusion lengths are determined by the photoconductivity as well as the luminescence surface quenching technique, in vacuum‐evaporated layers of (4,4′,4″‐tris(N‐(3‐methylphenyl)‐N‐phenylylamino) triphenylamine) (m‐MTDATA), 4,4′,4″‐tris[2‐naphthyl(phenyl)amino] triphenylamine (2TNATA), and N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐[1,1′‐biphenyl]‐4,4′‐diamine (TPD) which are frequently used for fabrication of electroluminescent...
-
Ln2(SeO3)2(SO4)(H2O)2 (Ln=Sm, Dy, Yb): A Mixed‐Ligand Pathway to New Lanthanide(III) Multifunctional Materials Featuring Nonlinear Optical and Magnetic Anisotropy Properties
PublikacjaBottom-up assembly of optically nonlinear and magnetically anisotropic lanthanide materials involving precisely placed spin carriers and optimized metal-ligand coordination offers a potential route to developing electronic architectures for coherent radiation generation and spin-based technologies, but the chemical design historically has been extremely hard to achieve. To address this, we developed a worthwhile avenue for creating...
-
Phase Change Thermal Energy Storage – The Experience of the Materials Preparation for the Specific Applications.
PublikacjaThermal energy storage and temperature stabilization is very important in many engineering applications. There are three kinds of thermal energy storage: sensible heat storage, latent heat storage and reversible chemical reaction heat storage. Phase change materials (PCM) absorb, store and release large amounts of energy in the form of latent heat, at constant temperature, called the transition temperature. The amount of heat...
-
Advances in olfaction-inspired biomaterials applied to bioelectronic noses
PublikacjaAmong all the senses, olfactory system of mammals is the least characterised as far as the mechanisms of odour identification are concerned. The results of recent investigations allow better understanding of the operation mechanism of the sense of smell. Progress in this field is crucial for the development of sensor technology based on olfaction-inspired biomaterials, which simulate the olfactory system of the biological counterparts....
-
Influence of iron content on water uptake and charge transport in BaCe0.6Zr0.2Y0.2−xFexO3−δ triple-conducting oxides
PublikacjaIn this work, we studied the BaCe0.6Zr0.2Y0.2−xFexO3−δ system which belongs to the triple-conducting oxides (TCOs) group. The electrochemical properties of BaCe0.6Zr0.2Y0.2−xFexO3−δ were investigated using electrochemical impedance spectroscopy (EIS) and the water uptake was analyzed using thermogravimetry (TG). All investigated materials exhibited water uptake, with proton concentration increasing with decreasing iron content....
-
TaRh 2 B 2 and NbRh 2 B 2 : Superconductors with a chiral noncentrosymmetric crystal structure
PublikacjaIt is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials—even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties...
-
Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
PublikacjaWith the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature...
-
Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces
PublikacjaDensity functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed, and this is often done via a uniform background charge of opposite sign (“jellium”). This artificial neutralization does not occur in reality, where a different...
-
The Influence of Iron Doping on Performance of SrTi1-XFexO3-δ Perovskite Oxygen Electrode for SOFC
PublikacjaSolid Oxide Fuel Cells (SOFC) are based on electrolytes and mixed ionic and electronic conductivity (MIEC) materials. The need to reduce costs causes an increase in interest of new compounds suitable for operating temperatures between 600 °C and 800 °C. The SrTi1-xFexO3 (STF) perovskite material is a perspective material that could be used for the oxygen electrodes. In this work STF materials with different content of iron (x =...
-
A Family of Pb-based Superconductors with Variable Cubic to Hexagonal Packing
PublikacjaWe describe three previously unreported superconductors, BaPb3, Ba0.89Sr0.11Pb3, and Ba0.5Sr0.5Pb3. These three materials, together with SrPb3, form a distinctive isoelectronic family of intermetallic superconductors based on the stacking of Pb planes, with crystal structures that display a hexagonal to cubic perovskite-like progression, as rarely seen in metals. The superconducting transition temperatures (Tc) are similar for...
-
GRAPHENE-BASED SUPERCAPACITORS APPLICATION FOR ENERGY STORAGE
PublikacjaRecent advances in graphene-based supercapacitor technology for energy storage application were summarized. The comparison of different types of electrode materials in such supercapacitors was performed. The supercapacitors with graphene-based electrodes exhibit outstanding performance: high charge-discharge rate, high power density, high energy density and long cycle-life, what makes them suitable for various applications, e.g....
-
NbIr 2 B 2 and TaIr 2 B 2 – New Low Symmetry Noncentrosymmetric Superconductors with Strong Spin–Orbit Coupling
PublikacjaSuperconductivity was first observed more than a century ago, but the search for new superconducting materials remains a challenge. The Cooper pairs in superconductors are ideal embodiments of quantum entanglement. Thus, novel superconductors can be critical for both learning about electronic systems in condensed matter and for possible application in future quantum technologies. Here two previously unreported materials, NbIr2B2...
-
In situ transformation boosts the pseudocapacitance of CuNi-MOF via cooperative orientational and electronic governing
PublikacjaThe disordered arrangement and thereof inferior conductivity of 2D MOF sheets seriously hinder their practical application. Herein, we propose in situ transformation strategy to architect vertically oriented bimetallic CuNi-MOF as a self-supporting electrode, leading to a decuple high specific capacitance of 1262 C g-1 in comparison with the pristine Ni-MOF powder of 114 C g-1 at 2 A g-1. DFT calculations reveal that introduction...
-
Understanding the Electronic Structure and Optical Properties of Vacancy-Ordered Double Perovskite A2BX6 for Optoelectronic Applications
PublikacjaOver the past few years, metal halide perovskite solar cells have made significant advances. Currently, the single-junction perovskite solar cells reach a conversion efficiency of 25.7%. Perovskite solar cells with a wide band gap can also be used as top absorber layers in multi-junction tandem solar cells. We examined the dynamical and thermal stability, electronic structure, and optical features of In2PtX 6 (X = Cl, Br, and I)...
-
Induction heating in estimation of thermal properties of conductive materials
Publikacja -
Spin and Orbital Effects on Asymmetric Exchange Interaction in Polar Magnets: M(IO3)2 (M = Cu and Mn)
PublikacjaMagnetic polar materials feature an astonishing range of physical properties, such as magnetoelectric coupling, chiral spin textures, and related new spin topology physics. This is primarily attributable to their lack of space inversion symmetry in conjunction with unpaired electrons, potentially facilitating an asymmetric Dzyaloshinskii–Moriya (DM) exchange interaction supported by spin–orbital and electron–lattice coupling. However,...
-
A review of design approaches for the implementation of low-frequency noise measurement systems
PublikacjaElectronic noise has its roots in the fundamental physical interactions between matter and charged particles, carrying information about the phenomena that occur at the microscopic level. Therefore, Low-Frequency Noise Measurements (LFNM) are a well-established technique for the characterization of electron devices and materials and, compared to other techniques, they offer the advantage of being non-destructive and of providing...
-
Enhanced Electrochemical Performance of MnCo1.5Fe0.5O4Spinel for Oxygen Evolution Reaction through Heat Treatment
PublikacjaMnCo1.5Fe0.5O4 spinel oxide was synthesized using the sol−gel technique, followed by heat treatment at various temperatures (400, 600, 800, and 1000 °C). The prepared materials were examined as anode electrocatalysts for watersplitting systems in alkaline environments. Solid-state characterization methods, such as powder X-ray diffraction and X-ray absorption spectroscopy (XAS), were used to analyze the materials’ crystallographic...
-
Current Trends in Wick Structure Construction in Loop Heat Pipes Applications: A Review
PublikacjaThermal control systems have been introduced as an important part of electronic devices, enabling thermal management of their electronic components. Loop heat pipe (LHP) is a passive two-phase heat transfer device with significant potential for numerous applications, such as aerospace applications, high-power LEDs, and solar central receivers. Its advantages are high heat transfer capability, low thermal resistance, long-distance...
-
Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy
PublikacjaWe present the electric field-induced absorption (electroabsorption, EA) spectra of the solid neat films of tris(bipyridine) Ru(II) complexes, which were recently functionalized in our group as photosensitizers in dye-sensitized solar cells, and we compare them with the results obtained for an archetypal [Ru(bpy)3]2+ ion (RBY). We argue that it is difficult to establish a unique set of molecular parameter values by discrete parametrization...
-
Ternary Bismuthide SrPtBi2: Computation and Experiment in Synergism to Explore Solid-State Materials
PublikacjaA combination of theoretical calculation and the experimental synthesis to explore the new ternary compound is demonstrated in the Sr–Pt–Bi system. Because Pt–Bi is considered as a new critical charge-transfer pair for superconductivity, it inspired us to investigate the Sr–Pt–Bi system. With a thorough calculation of all the known stable/metastable compounds in the Sr–Pt–Bi system and crystal structure predictions, the thermodynamic...
-
Differentiation Between Spirits According to Their Botanical Origin
PublikacjaAgricultural distillates are used for the production of spirit beverages. As more and more products with a specific botanical composition specified on the label are produced (e.g. rye vodkas, wheat vodkas and Polish Vodka, which cannot be produced with the addition of maize distillate), it is necessary to look for quicker and more accurate methods allowing the determination of botanical origin of alcoholic beverages and materials...
-
Nanokrystaliczne warstwy ceramiczne otrzymywane metodą pirolizy aerozolowej w tlenkowych ogniwach paliwowych
PublikacjaNiniejsza rozprawa doktorska dotyczy badań materiałów wytwarzanych w postaci cienkich, nanokrystalicznych warstw ceramicznych metodą pirolizy aerozolowej dla zastosowań w tlenkowych ogniwach paliwowych (SOFC). Badane są trzy możliwe obszary zastosowań wytwarzanych warstw tj. osadzanie powłok ochronnych na stalowych interkonektorach dostarczających gazy do elektrody tlenowej, wytwarzanie bariery ochronnej zapobiegającej dyfuzji...
-
Linking optical and electronic properties to photoresponse of heterojunctions based on titania nanotubes and chromium, molybdenum, and tungsten oxides
PublikacjaThe development of photosensitization strategies for titanium dioxide is necessary for the enhancement of its optical and electronic properties towards its application potential in solar photoelectrochemistry. In this work, significant differences in the photosensitizing capability of the 6th group transition metal oxides applied on the surface of titania nanotubes are reported. For the first time, correlations between the experimentally...
-
Hebb–Wagner polarization method for determining the oxygen ion conductivity in barium cerate-zirconate
PublikacjaIn this work, the partial conductivity of oxygen ions in BaCe0.6Zr0.2Y0.2O3 was studied at different temperatures and water partial pressures. For this purpose, a modified DC Hebb–Wagner polarization method with an electrode blocking for protons and electrons was used. A new type of measuring cell as well as a suitable calculation model were proposed for the determination of partial oxygen ionic conductivity in materials with three...