Filters
total: 10975
filtered: 699
-
Catalog
Chosen catalog filters
Search results for: SURROGATE-BASED OPTIMIZATION.
-
What entrepreneurs think about tax optimization?
Open Research DataThe study conducted on a group of 259 entrepreneurs concerned the behavioral attitudes of business owners regarding their opinion on tax optimization. From the study we will learn, among others, how tax optimization is defined according to entrepreneurs, their attitude towards it, as well as what optimization actions they have taken so far.
-
Numerical optimization of planar antenna structures using trust-region algorithm with adaptively adjusted finite differences
Open Research DataThe dataset contains initial designs and optimization results for three planar structures that include quasi-patch antenna for WLAN applications, compact spline-parameterized monopole dedicated for ultra-wideband applications, as well as rectifier for energy harvesting with enhanced bandwidth. The numerical results for the first two structures are also...
-
The study of the influence of ZnO nanoparticles on pyocyanin production - the optimization of production and the study of the physiological response of the cells
Open Research DataThis dataset presents the in-depth analysis of the influence of zinc oxide nanoparticles on pyocyanin production.
-
Optical properties of MnO-B2O3 based glass
Open Research DataMnO-B2O3 based glass with Au nanoparticles samples were annealing for a various time (in a range of 24-96 hours) at various temperatures (from 340 up to 350 deg.). Presence of silver nanoparticles was detected by UV-VIS measurements. On the basis of change optical bandgap, Ag NPs was detected.
-
Bio based PUR-PIR foams thermal degradation (TG) and isoconversional kinetics
Open Research DataIn the present work, we perform a thorough thermogravimetric (TG) analysis of the bio-based polyurethane – polyisocyanurate (PUR-PIR) foams in both nitrogen and oxygen atmosphere. A sustainable element of the foam was a biopolyol obtained via acid-catalyzed liquefaction of Zostera Marina and Enteromorpha Algae biomass. Based on isoconversional analysis...
-
Phylogenetic trees of genus Oncidium Sw. based on analysis of DNA sequences
Open Research DataGenus Oncidium Sw. is widely regarded as a polyphiletic, and the taxonomic boundaries between him and such genera as Odontoglossum Kunth. or Miltonia Lindley remain blurred. The goal of the study was to determine the phylogenetic relationships within the genus Oncidium s.lato based on the DNA sequences analysis. The correlation between molecular data...
-
Optimization of the femtosecond laser impulse for excitation and the spin-orbit-mediated dissociation in the NaRb molecule
Open Research DataHigh accuracy ab initio potential energy curves (1tSigma+, 2sSigma+, 1tPi), electronic transition dipole moment function (1tSigma+ - 1tPi), and spin-orbit coupling (2sSigma+ - 1tPi) have been calculated for the NaRb molecule. The time-dependent excitation and dissociation processes in the polar alkali diatomic NaRb molecule and the quantum properties...
-
Investigation of temperature changes using a microsphere-based fiber-optic sensor
Open Research DataInvestigation of temperature changes using a microsphere-based fiber-optic sensor with a 200 nm ZnO ALD coating for the purpose of validation the design of the sensor, measurement setup and method of examination of electric cell materials.
-
The electrochemical impedance spectroscopy studies of cataphoretic-grown epoxy-based coatings
Open Research DataThe dataset contains electrochemical impedance spectroscopy spectra collected for epoxy-based cataphoretic coatings in order to determine the offered anti-corrosion protection. Particular spectra pertain to the coatings applied for the different magnitude of polarization potential imposed, namely 10V, 20V and 30V. The results were obtained within the...
-
Bio-based polyester polyols for polyurethane foams - chemical structure of reference sample
Open Research DataPresented dataset includes the results of FTIR and H NMR spectroscopy of bio-based polyester polyol - poly(propylene succinate) (reference sample for materials obtained during MINIATURA 4 project realization).
-
bio-based polyester polyols - chemical structure of Miniatura 4 proper samples
Open Research DataPresented results are related with project MINIATURA 4 realization. At the document, the chemical structure of bio-based polyester polyols (poly(propylene-co-propan-1,2,3-triol succinate)s) are presented as analysis of FTIR and H NMR spectroscopy.
-
Dependence of biological sensing on temperature based on investigation of SARS-CoV-2
Open Research DataPresented dataset is the result of an investigation of the attachment of SARS-CoV-2 specific IgG in the temepratures relevant in biology. The samples were measured during a period of 15 minutes, at 5°C, 25°C and 55°C. The measurements were performed using the microspher-based fiber-optic sensor, as an interferometer. The broadband optical light source...
-
LDRAW based positional renders of LEGO bricks
Open Research Data243 different LEGO bricks renders of size 250x250 in 5 colors in 120 viewing angles stored as JPEG images. The renders are used to train neural networks for bricks recognition. All images were generated using L3P (http://www.hassings.dk/l3/l3p.html) and POV-Ray (http://www.povray.org/) tools and were based on the 3D models from LDraw (https://www.ldraw.org/)...
-
The influence of microstructure on the corrosion resistance for some titanium-based alloys
Open Research DataThis dataset contains scanning electron microscopy (SEM) micrographs revealing the microstructure of some Ti-based alloys, namely: Ti-6Al-4V (file name: TiV), Ti-6Al-7Nb (file name: TiNb) and TC21 (file name: TiAlSnZrMoCrNbSi) alloys and their localized corrosion as a result of passive layer breakdown in a corrosive environment, ie. 0.9% NaCl solution...
-
Determination the method of free alcohol fermented beverage production based on roasted raw materials.
Open Research DataData set presents the results of monosaccharides and ethyl alcohol determination in samples of fermented cereal drink with increased health value based on barley malt and roasting of rye, chicory and beetroot, and with the addition of hops. The HPLC method with RID detector was used for determinations
-
Tellurite based glass doped by Eu3+ ions - XPS measurements
Open Research DataEu3+ doped tellurite glass ceramics containing SrF2 nanocrystals were prepared using melt quenching technique and subsequent heat treatment of glass in 370 °C for different time periods. Thermal properties of glass matrix have been determined based on DSC measurements. XRD and XPS results confirmed formation of SrF2 nanocrystals in glass matrices after...
-
Ni-based compounds in multiwalled graphitic shell for electrocatalytic oxygen evolution reactions
Open Research DataThis study investigates Ni-based compounds (Ni, NiO, Ni3C) coated with a graphitic shell as electrocatalysts for the oxygen evolution reaction (OER). Electron paramagnetic resonance (EPR) and X-ray diffraction (XRD) are employed to identify the presence and contribution of Nickel ions (Ni0, Ni2+, Ni3+) and determine the phase composition. Electrochemical...
-
Surface EMG-based signal acquisition for decoding hand movements
Open Research DataBiosignal processing plays a crucial role in modern hand prosthetics. The challenge is to restore functionality of a lost limb based on the signals acquired from the surface of the stump. The number of sensors (emg channels) used for signal acquisition influence the quality of a prosthetic hand. Modern algorithms (including neural networks) can significantly...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 75 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 65 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 90 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 80 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 45 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 35 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 50 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 70 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapasitor with the use of ZnO coated microsphere-based fiber-optic sensor - 30 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 60 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 40 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 85 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 55 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Experimental dataset on detection of SARS-CoV-2 specific IgG antibodies by the fiber optic microsphere-based sensor
Open Research DataThe presented dataset is related to experimental detection of the ARS-CoV-2 specific IgG antibodies by the fibre optic microsphere-based sensor. To perform measurement we used a dedicated microsphere-based probe whose surface was immobilized.
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...