Filters
total: 914
filtered: 844
Search results for: euler-lagrange equations
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublicationAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublicationUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublicationUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublicationIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Adaptation of the arbitrary Lagrange–Euler approach to fluid–solid interaction on an example of high velocity flow over thin platelet
PublicationThe aim of this study is to analyse the behaviour of a thin plate with air flow velocities of 0.3–0.9 Ma. Data from the experiment and numerical tools were used for the analysis. For fluid–solid interaction calculations, the arbitrary Lagrange–Euler approach was used. The results of the measurements are twofold. The first one is the measurement of the flow before and after vibrating plate, i.e. pure flow plate, and the second consists...
-
Generalized Euler method for first order partial differential functional equations
PublicationW pracy prezentowana jest nowa klasa metod numerycznych dla nieliniowych równań różniczkowo funkcyjnych pierwszego rzędu.Rozwiązania klasyczne zagadnień początkowo brzegowych przybliżane są w tej pracy przez rozwiązania odpowiedniego układu quasilininowego równań różnicowych. Podajemy kompletną analizę zbieżności metod i pokazujemy na przykładach, iż nowa metoda jest zauważalnie lepsza niż klasyczne schematy różnicowe. Dowód stabilności...
-
Generalized Euler method for nonlinear first order partial differential equations.
PublicationKlasyczne rozwiązania nieliniowych równań różniczkowych cząstkowych pierwszego rzędu są aproksymowane w tej pracy za pomocą rozwiązań quasiliniowych układów równań różnicowych. Podstawowa idea pracy jest oparta na teorii charakterystyk. Podane są warunki wystarczające dla zbieżności metody. Dowód stabilności schematu różnicowego wykorzystuje metodę porównawczą z nieliniowymi oszacowaniami typu Perrona dla danych funkcji.Podane...
-
Non-linearity of multibody dynamic equations with respect to Lagrange multipliers: application to railway dynamics
PublicationPraca koncentruje się na dynamice układów wieloczłonowych z zamkniętymi łańcuchami członów. Głównym punktem zainteresowania jest modelowanie układów z występującymi nieliniowymi zależnościami opisującymi wpływ siły mnożników Lagrange'a na dynamikę układu (nieliniowe modele siły tarcia.). Aby zbudować model dynamiki układu zawierającego zamknięte łańcuchy członów, wspomniane łańcuchy są "rozcinane" i budowana jest struktura drzewa...
-
Approximate solution for Euler equations of stratified water via numerical solution of coupled KdV system
PublicationWe consider Euler equations with stratified background state that is valid for internal water waves. The solution of the initial-boundary problem for Boussinesq approximation in the waveguide mode is presented in terms of the stream function. The orthogonal eigenfunctions describe a vertical shape of the internal wave modes and satisfy a Sturm-Liouville problem. The horizontal profile is defined by a coupled KdV system which is...
-
Variational principles for bound states of Schrödinger and Dirac equations allowing the use of discontinuous trial functions
PublicationWe present systematic constructions of variational principles for energies of bound states of the Schroedinger and Dirac equations. The principles allow the use of discontinuous trial functions. The method employed is based on a generalized Lagrange procedure. Relationships between our variational principles and those available in the literature are established.
-
Closed Form Constraint Equations Used to Express Frictionless Slip of Multibody Systems Attached to Finite Elements—Application to a Contact between a Double Pendulum and a Beam
PublicationThis paper focuses on the numerical modeling of the dynamics of mechanical systems. Robots that can inspect high-voltage lines inspired this research. Their control systems must anticipate potential grab positions appropriately. We intend to formulate equations dedicated to the numerical description of the robot/cable contact. The investigated problem is not straightforward, since parts of the modeled systems are numerically inhomogeneous....
-
A comprehensive approach to double inverted pendulum modelling
PublicationThe problem of mathematical modelling and indication of properties of a DIP has been investigated in this paper. The aim of this work is to aggregate the knowledge on a DIP modelling using the Euler-Lagrange formalism in the presence of external forces and friction. To indicate the main properties important for simulation, model parameters identification and control system synthesis, analytical and numerical tools have been used....
-
Explicit and implicit difefrence methods for quasilinear first order partial functional differential equations.
PublicationInitial boundary value problems of the Dirichlet type for quasilinear functional differential equations are considered. Explicit difference schemes of the Euler type and implicit difference methods are investigated. Suffcient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that assumptions on the regularity of given functions are the same for both classes...
-
Modal Adjustment of Rayleigh Based Structural Damping and Coordinate-Partitioning Algorithm Dedicated to Frictionless Contact Constraints between Multibody System and Structure Modelled with Finite Elements
PublicationThe paper presents a dedicated numerical algorithm. The algorithm is advantageous during investigations of the dynamics of a hybrid multibody / finite-elements system. We focus our attention on interactions resulting from mechanical contact. Pointwise contact connects a vertex of the multibody structure and a surface of the elastic reference body. Instead of a positive value of the relative penetration factor, constraint equations...
-
General solution of quantum mechanical equations of motion with time-dependent Hamiltonians: A Lie algebraic approach
PublicationThe unitary operators U(t), describing the quantum time evolution of systems with a time-dependent Hamiltonian, can be constructed in an explicit manner using the method of time-dependent invariants. We clarify the role of Lie-algebraic techniques in this context and elaborate the theory for SU(2) and SU(1,1). In these cases we give explicit formulae for obtaining general solutions from special ones. We show that the constructions...
-
Elastoplastic material law in 6-parameter nonlinear shell theory
PublicationWe develop the elastoplastic constitutive relations for nonlinear exact 6-parameter shell theory. A J2-type theory with strain hardening is formulated that takes into account asymmetric membrane strain measures. The incremental equations are solved using implicit Euler scheme with closest point projection algorithm. The presented test example shows the correctness of the proposed approach. Influence of micropolar material parameters...
-
From fluid mechanics backgrounds to modern field theory
PublicationOur presentation keeps a historical line of reasoning, since we start from old concepts of fluid mechanics and finish on concepts of modern field theory. We want to show that some facts from the nature phenomena, which have firstly been discovered on the ground of fluid mechanics, were next incorporated into physics and later become the important pattern for whole mathematical physics. Especially, well-known continuum models, which...
-
Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass
PublicationThe planar response of horizontal massive taut strings, travelled by a heavy point-mass, either driven by an assigned force, or moving with an assigned law, is studied. A kinematically exact model is derived for the free boundary problem via a variational approach, accounting for the singularity in the slope of the deflected string. Reactive forces exchanged between the point-mass and the string are taken into account via Lagrange...
-
Forced Vibrations in a Dynamic System That Is Damped By a Mechanism Which Trans-Pass Through Its Singular Position
PublicationThe paper focuses on forced vibrations of a mechanical system. The system is composed of two structurally different parts: multibody modelled and finite elements modelled. To improve its numerical behaviour, author-proposed technique of tuning of modal properties is proposed. To combine the two sub-models, constraint equations are introduced and dynamics equations are extended with appropriate Lagrange multipliers. A slightly modified...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublicationThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Vibration of the bridge under moving singular loads - theoretical formulation and numerical solution
PublicationThe paper presents the results of the numerical analysis of a simple vehicle passing over a simply supported bridge span. The bridge is modelled by a Euler-Bernoulli beam. The vehicle is modelled as a linear, visco-elastic oscillator, moving at a constant speed. The system is described by a set of differential equations of motion and solved numerically using the Runge-Kutta algorithm. The results are compared with the solution...
-
On the plastic buckling of curved carbon nanotubes
PublicationThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
Mathematical modelling of the overhead contact line for the purpose of diagnostics of pantographs
PublicationThe overhead contact line (OCL) is the most effective way for supplying railway electric vehicles. The increase of the speed of the vehicles increases power consumption and requires ensuring proper cooperation of pantographs with OCL. The paper describes the novel mathematical model of the OCL system and the simulation results. The primary objective is a more accurate analysis to increase the reliability of the evaluation of monitoring...
-
Transient response of oscillated carbon nanotubes with an internal and external damping
PublicationThe present works aims at modeling a viscoelastic nanobeam with simple boundary conditions at the two ends with the introduction of the Kelvin-Voigt viscoelasticity in a nonlocal strain gradient theory. The nanobeam lies on the visco-Pasternak matrix in which three characteristic parameters have a prominent role. A refined Timoshenko beam theory is here applied, which is only based on one unknown variable, in accordance with the...
-
On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
PublicationAmong various magneto-elastic phenomena, flexomagnetic (FM) coupling can be defined as a dependence between strain gradient and magnetic polarization and, contrariwise, elastic strain and magnetic field gradient. This feature is a higher-order one than piezomagnetic, which is the magnetic response to strain. At the nanoscale, where large strain gradients are expected, the FM effect is significant and could be even dominant. In...
-
Nonlocalized thermal behavior of rotating micromachined beams under dynamic and thermodynamic loads
PublicationRotating micromachined beams are one of the most practical devices with several applications from power generation to aerospace industries. Moreover, recent advances in micromachining technology have led to huge interests in fabricating miniature turbines, gyroscopes and microsensors thanks to their high quality/reliability performances. To this end, this article is organized to examine the axial dynamic reaction of a rotating...
-
On nonlinear dilatational strain gradient elasticity
PublicationWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublicationIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures
PublicationWe focus on the mechanical strength of piezomagnetic beam-like nanosize sensors during post-buckling. An effective flexomagnetic property is also taken into account. The modelled sensor is selected to be a Euler-Bernoulli type beam. Long-range interactions between atoms result in a mathematical model based on the nonlocal strain gradient elasticity approach (NSGT). Due to possible large deformations within a post-buckling phenomenon,...
-
On topology optimization of large deformation contact-aided shape morphing compliant mechanisms
PublicationA topology optimization approach for designing large deformation contact-aided shape morphing compliant mechanisms is presented. Such mechanisms can be used in varying operating conditions. Design domains are described by regular hexagonal elements. Negative circular masks are employed to perform dual task, i.e., to decide material states of each element and also, to generate rigid contact surfaces. Each mask is characterized by...
-
On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube
PublicationIn order to describe the behavior of thin elements used in MEMS and NEMS, it is essential to study a nonlinear free vibration of nanotubes under complicated external fields such as magnetic environment. In this regard, the magnetic force applied to the conductive nanotube with piezo-flexomagnetic elastic wall is considered. By the inclusion of Euler-Bernoulli beam and using Hamilton’s principle, the equations governing the system...
-
Modelling of dark fermentation of glucose and sour cabbage
PublicationIn the article, modified Anaerobic Digestion Models 1 (ADM-1) was tested for modelling dark fermentation for hydrogen production. The model refitting was done with the Euler method. The new model was based on sets of differential equations. The model was checked for hydrogen production from sour cabbage in batch and semi-batch in 5 g VSS (volatile solid suspension)/L and at the semi-batch process from glucose at 5 and 10 g VSS/L....
-
On a flexomagnetic behavior of composite structures
PublicationThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
An isogeometric finite element formulation for boundary and shell viscoelasticity based on a multiplicative surface deformation split
PublicationThis work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system,which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff–Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface...
-
Modelowanie matematyczne górnej sieci trakcyjnej dla potrzeb diagnostyki odbieraków prądu
PublicationGórna sieć trakcyjna jest obecnie najbardziej skutecznym sposobem zasilania kolejowych pojazdów elektrycznych. Wzrost prędkości pojazdów zwiększa pobór mocy i wymaga zapewnienia właściwej współpracy odbieraków prądu pojazdów z siecią jezdną. Metody modelowania i projektowania wspomaganego komputerowo dla górnej sieci trakcyjnej są obecnie na całym świecie szeroko rozwijane. W artykule przedstawiono nowy model matematyczny elementów...
-
Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect
PublicationIn recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This...
-
Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance
PublicationThe impetus of writing this paper is to propose an efficient detection mechanism to scan the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), operating in non-contact mode. In order to implement this scheme, the principal parametric resonance characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mechanism. It is assumed that the microcantilever is made...
-
Equations with Separated Variables on Time Scales
PublicationWe show that the well-known theory for classical ordinary differential equations with separated variables is not valid in case of equations on time scales. Namely, the uniqueness of solutions does not depend on the convergence of appropriate integrals.
-
Fractional differential equations with causal operators
PublicationWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
On the Peano Theorem for Some Functional Differential Equations on Time Scale
PublicationThe Peano Theorem for some functional differential equations on time scale is proved. Assumptions are of Caratheodory type. Two counter examples for false Peano theorems in the literature are presented.
-
Some remarks on the Euler ring U(G)
PublicationNiech G będzie zwartą grupą Liego i niech U(G) oznacza pierściń Eulera G skonstruoawany przez tom Diecka w [5,6]. Główny wynikpracy (Twierdzenie 4.1) opisuje homomorfizm pierścienia U(SO(3)) w pierścień U(SO(2))indukowany przez włożenie grupy SO(2) w grupę SO(3).
-
Euler tour lock-in problem in the rotor-router model
PublicationW pracy rozważano model eksploracji grafu nieskierowanego przez pojedynczego agenta, w którym sterowanie agentem odbywa się zgodnie z zasadą ''rotor-router'' (inaczej: ''Propp machine''). Porównano czas stabilizacji agenta do trajektorii w postaci cyklu Eulera dla różnych klas grafów, prowadząc rozważania w kontekście teorii gier. Przydział początkowych portów i wskaźników w modelu jest traktowany jako rozgrywka pomiędzy graczem...
-
Parabolic Equations with Functional Dependence
PublicationWe consider the Cauchy problem for nonlinear parabolic equations with functional dependence and prove theorems on the existence of solutions to parabolic differential-functional equations.
-
Systems of Nonlinear Fractional Differential Equations
PublicationUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
GENERAL DYNAMIC PROJECTING OF MAXWELL EQUATIONS
PublicationA complete – system of Maxwell equations is splitting into independent subsystems by means of a special dynamic projecting technique. The technique relies upon a direct link between field components that determine correspondent subspaces. The explicit form of links and corresponding subspace evolution equations are obtained in conditions of certain symmetry, it is illustrated by examples of spherical and quasi-one-dimensional waves.
-
Functional delay fractional equations
PublicationIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.
-
Boundary problems for fractional differential equations
PublicationIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
Action-reaction based synthesis of acoustic wavefield equations
PublicationThe analysis of acoustic fields is usually based on the well-known mathematics of second order partial differential equations called wave equations. The author explores the duality and symmetry of linear fluid mechanics and develops two distinct equations of acoustics on the basis of a causal approach to local small-scale phenomena. Wavefields that are solutions of these equations have different composition, the spherical pressure...
-
On neutral differential equations and the monotone iterative method
PublicationThe application of the monotone iterative method to neutral differential equations with deviating arguments is considered in this paper. We formulate existence results giving sufficient conditions which guarantee that such problems have solutions. This approach is new and to the Authors' knowledge, this is the first paper when the monotone iterative method is applied to neutral first-order differential equations with deviating...
-
Hydraulic equations for vortex separators dimensioning
PublicationThe paper presents a set of hydraulic expressions developed to design vortex separators. These devices are used for gravitational removal of suspensions from wastewater. Measurements and theoretical considerations allowed the authors to formulate a mathematically simple velocity field model. Than, equations describing particle motion in the separator were derived. Finally, a technical procedure for hydraulic design of vortex separators...