Filters
total: 110
filtered: 104
Search results for: GLOBAL OPTIMIZATION
-
Robust Parameter Tuning of Antenna Structures by Means of Design Specification Adaptation
PublicationParameter tuning through numerical optimization has become instrumental in the design of high-performance antenna systems. Yet, practical optimization faces several major challenges, including high cost of massive evaluations of antenna characteristics, normally involving full-wave electromagnetic (EM) analysis, large numbers of adjustable variables, the shortage of reasonable initial solutions in the case of topologically complex...
-
Low-Cost and Precise Automated Re-Design of Antenna Structures Using Interleaved Geometry Scaling and Gradient-Based Optimization
PublicationDesign of contemporary antennas is an intricate endeavor involving multiple stages, among others, tuning of geometry parameters. In particular, re-designing antennas to different operating frequencies, makes parametric optimization imperative to ensure the best achievable system performance. If the center frequency at the current design is distant from the target one, local tuning methods generally fail, whereas global algorithms...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Supervised-learning-based development of multi-bit RCS-reduced coding metasurfaces
PublicationCoding metasurfaces have been introduced as efficient tools allowing meticulous control over the electromagnetic (EM) scattering. One of their relevant application areas is radar cross section (RCS) reduction, which principally relies on the diffusion of impinging EM waves. Despite its significance, careful control of the scattering properties poses a serious challenge at the level of practical realization. This article is concerned...
-
Minimizing Greenhouse Gas Emissions From Ships Using a Pareto Multi-Objective Optimization Approach
PublicationTo confront climate change, decarbonization strategies must change the global economy. According to statements made as part of the European Green Deal, maritime transport should also become drastically less polluting. As a result, the price of transport must reflect the impact it has on the environment and on health. In such a framework, the purpose of this paper is to suggest a novel method for minimizing emissions...
-
Expedited Gradient-Based Design Closure of Antennas Using Variable-Resolution Simulations and Sparse Sensitivity Updates
PublicationNumerical optimization has been playing an increasingly important role in the design of contemporary antenna systems. Due to the shortage of design-ready theoretical models, optimization is mainly based on electromagnetic (EM) analysis, which tends to be costly. Numerous techniques have evolved to abate this cost, including surrogate-assisted frameworks for global optimization, or sparse sensitivity updates for speeding up local...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor
PublicationHydrodynamic cavitation (HC) has been widely considered a promising technique for industrial-scale process intensifications. The effectiveness of HC is determined by the performance of hydrodynamic cavitation reactors (HCRs). The advanced rotational HCRs (ARHCRs) proposed recently have shown superior performance in various applications, while the research on the structural optimization is still absent. The present study, for the...
-
Optimal Placement of Phasor Measurement Unit in Power System using Meta-Heuristic Algorithms
PublicationThe phasor measurement units (PMUs) play an important and vital role in power system monitoring and controlling, since they provide the power system phasors stamped with a common real time reference through a global positioning system (GPS). Indeed, from economical point of view it is not possible to set PMUs in all system buses due to the high cost and the requirement of more complex communication...
-
Testing Stability of Digital Filters Using Optimization Methods with Phase Analysis
PublicationIn this paper, novel methods for the evaluation of digital-filter stability are investigated. The methods are based on phase analysis of a complex function in the characteristic equation of a digital filter. It allows for evaluating stability when a characteristic equation is not based on a polynomial. The operation of these methods relies on sampling the unit circle on the complex plane and extracting the phase quadrant of a function...
-
Strategies for computationally feasible multi-objective simulation-driven design of compact RF/microwave components
PublicationMulti-objective optimization is indispensable when possible trade-offs between various (and usually conflicting) design objectives are to be found. Identification of such design alternatives becomes very challenging when performance evaluation of the structure/system at hand is computationally expensive. Compact RF and microwave components are representative examples of such a situation: due to highly compressed layouts and considerable...
-
MEAN SHIFT BASED SEGMENTATION FOR BLEEDING REGIONS IN ENDOSCOPIC VIDEOS
PublicationWith a set of 38 manually marked bleeding regions form endoscopic videos, the authors attempted to find an optimal image segmentation method for reproducing doctor’s markup. Mean shift segmentation combined with HSV histogram segmentation were used as a segmentation method, which was then optimized by tuning the parameters of the method using global optimization algorithm. A target function for measuring the quality of segmentation was...
-
Co-gasification of waste biomass-low grade coal mix using downdraft gasifier coupled with dual-fuel engine system: Multi-objective optimization with hybrid approach using RSM and Grey Wolf Optimizer
PublicationThe looming global crisis over increasing greenhouse gases and rapid depletion of fossil fuels are the motivation factors for researchers to search for alternative fuels. There is a need for more sustainable and less polluting fuels for internal combustion engines. Biomass offers significant potential as a feed material for gasification to produce gaseous fuel. It is carbon neutral, versatile, and abundant on earth. The present...
-
Optymalizacja rozkładu jazdy na kolei z uwzględnieniem efektywności hamowania odzyskowego.
PublicationNa wstępie artykułu przybliżono czytelnikowi, czym jest rozkład jazdy na sieci kolejowej, na czym polega jego optymalizacja oraz odwołano się do literatury opisującej proces jego konstrukcji. W dalszej części przedstawiono kryteria optymalizacji rozkładu jazdy i zaproponowano podejście od strony efektywności wykorzystania energii pochodzącej z hamowania rekuperacyjnego, realizowanego metodą odzysku bezpośrednio do sieci trakcyjnej....
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublicationSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Objective selection of minimum acceptable mesh refinement for EMC simulations
PublicationOptimization of computational electromagnetics (CEM) simulation models can be costly in both time and computing resources. Mesh refinement is a key parameter in determining the number of unknowns to be processed. In turn, this controls the time and memory required for a simulation. Hence, it is important to use only a mesh that is good enough for the objectives of the simulation, whether for direct handling of high-fidelity EM...
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublicationLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...
-
The advanced monitoring as a key factor for appropriate optimization and control of full-scale activated sludge systems – case study Debogorze WWTP.
PublicationComputer simulation has become a helpful tool in wastewater treatment systems performance and effectiveness analysis. Advanced monitoring, by using appropriate software, enables to create a mathematical model of a real wastewater treatment plant (WWTP), run a simulation and subsequently interpret results under various conditions. An operation of WWTP is usually controlled by global parameters such as flow, solids retention time,...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublicationIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
Design of High-Performance Scattering Metasurfaces through Optimization-Based Explicit RCS Reduction
PublicationThe recent advances in the development of coding metasurfaces created new opportunities in realization of radar cross section (RCS) reduction. Metasurfaces, composed of optimized geometries of meta-atoms arranged as periodic lattices, are devised to obtain desired electromagnetic (EM) scattering characteristics. Despite potential benefits, their rigorous design methodologies are still lacking, especially in the context of controlling...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublicationUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Improved Design Closure of Compact Microwave Circuits by Means of Performance Requirement Adaptation
PublicationNumerical optimization procedures have been widely used in the design of microwave components and systems. Most often, optimization algorithms are applied at the later stages of the design process to tune the geometry and/or material parameter values. To ensure sufficient accuracy, parameter adjustment is realized at the level of full-wave electromagnetic (EM) analysis, which creates perhaps the most important bottleneck due to...
-
Analysis of nonlinear eigenvalue problems for guides and resonators in microwave and terahertz technology
PublicationThis dissertation presents developed numerical tools for investigating waveguides and resonators' properties for microwave and terahertz technology. The electromagnetics analysis requires solving complex eigenvalue problems, representing various parameters such as resonant frequency or propagation coefficient. Solving equations with eigenvalue boils down to finding the roots of the determinant of the matrix. At the beginning, one...
-
Expedited Trust-Region-Based Design Closure of Antennas by Variable-Resolution EM Simulations
PublicationThe observed growth in the complexity of modern antenna topologies fostered a widespread employment of numerical optimization methods as the primary tools for final adjustment of the system parameters. This is mainly caused by insufficiency of traditional design closure approaches, largely based on parameter sweeping. Reliable evaluation of complex antenna structures requires full-wave electromagnetic (EM) analysis. Yet, EM-driven...
-
Social media and efficient computer infrastructure in smart city
PublicationSocial media require an efficient infrastructures of computer and communication systems to support a smart city. In a big city, there are several crucial dilemmas with a home and public space planning, a growing population, a global warming, carbon emissions, a lack of key resources like water and energy, and a traffic congestion. In a smart city, we expect an efficient and sustainable transportation, efficient management of resources...
-
Expedited Re-Design of Multi-Band Passive Microwave Circuits Using Orthogonal Scaling Directions and Gradient-Based Tuning
PublicationGeometry scaling of microwave circuits is an essential but challenging task. In particular, the employment of a given passive structure in a different application area often requires re-adjustment of the operating frequencies/bands while maintaining top performance. Achieving this necessitates utilization of numerical optimization methods. Nonetheless, if the intended frequencies are distant from the ones at the starting point,...
-
Surrogate-Assisted Design of Checkerboard Metasurface for Broadband Radar Cross-Section Reduction
PublicationMetasurfaces have been extensively exploited in stealth applications to reduce radar cross section (RCS). They rely on the manipulation of backward scattering of electromagnetic (EM) waves into various oblique angles. However, arbitrary control of the scattering properties poses a significant challenge as a design task. Yet it is a principal requirement for making RCS reduction possible. This article introduces a surrogate-based...
-
Simulation-driven design of compact ultra-wideband antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively
PublicationGlobal food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and...
-
Enhancing the bioconversion rate and end products of black soldier fly (BSF) treatment – A comprehensive review
PublicationFood security remains a pressing concern in the face of an increasing world population and environmental challenges. As climate change, biodiversity loss, and water scarcity continue to impact agricultural productivity, traditional livestock farming faces limitations in meeting the growing global demand for meat and dairy products. In this context, black soldier fly larvae (BSFL) have emerged as a promising alternative for sustainable...
-
Modelling of Abdominal Wall Under Uncertainty of Material Properties
PublicationThe paper concerns abdominal wall modelling. The accurate prediction and simulation of abdominal wall mechanics are important in the context of optimization of ventral hernia repair. The shell Finite Element model is considered, as the one which can be used in patient-specific approach due to relatively easy geometry generation. However, there are uncertainties in this issue, e.g. related to mechanical properties since the properties...
-
Comparable analysis of PID controller settings in order to ensure reliable operation of active foil bearings
PublicationIn comparison to the traditional solutions, active bearings offer great operating flexibility, ensure better operating conditions over a wider range of rotational speeds and are safe to use. In order to ensure optimum bearing performance a bearing control system is used that adapts different geometries during device operation. The selection of optimal controller parameters requires the use of modern optimization methods that make...
-
Potential of novel atomic emission techniques as a tool for investigation of the possibilities of using industrial waste as additives in construction materials
PublicationNowadays, due to the global ecological crisis and ways to prevent a climate disaster, more and more attention is paid to green techno-logies and green Chemistry, which are part of the so-called “The Green Deal.” The main assumption is the optimization of the processes of producing necessary goods and the implementation of methods of managing postproduction waste in the least environmentally harmful manner. In the presented research,...
-
Areas of Fan Research—A Review of the Literature in Terms of Improving Operating Efficiency and Reducing Noise Emissions
PublicationFans as industrial devices are among the most significant single recipients of driving energy. Therefore, they represent an important area of energy savings to reduce CO2 emissions. The ubiquity of fans and their operation under conditions different from the optimum provides an opportunity for more significant global reductions in the energy used to drive them. The second important aspect, besides energy efficiency, related to...
-
Rapid and Reliable Re-Design of Miniaturized Microwave Passives by Means of Concurrent Parameter Scaling and Intermittent Local Tuning
PublicationRe-design of microwave passive components for the assumed operating frequencies or substrate parameters is an important yet a tedious process. It requires simultaneous tuning of relevant circuit variables, often over broad ranges thereof, to ensure satisfactory performance of the system. If the operating conditions at the available design are distant from the intended ones, local optimization is typically insufficient, whereas...
-
Ochrona odbiorników GNSS przed zakłóceniami celowymi
PublicationArtykuł dotyczy zastosowania algorytmów przestrzennego cyfrowego przetwarzania sygnałów dla potrzeb selektywnej eliminacji sygnałów zakłócających pracę odbiorników nawigacji satelitarnej GNSS. Omówiono podatność tych odbiorników na ataki elektroniczne typu zagłuszanie oraz spoofing. Polegają one na celowej emisji sygnałów niepożądanych w paśmie pracy systemu. Następnie przedstawiono koncepcję przeciwdziałania tego rodzaju zakłóceniom...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublicationPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Diagonalized Macromodels in Finite Element Method for Fast Electromagnetic Analysis of Waveguide Components
PublicationA new technique of local model-order reduction (MOR) in 3-D finite element method (FEM) for frequency-domain electromagnetic analysis of waveguide components is proposed in this paper. It resolves the problem of increasing solution time of the reduced-order system assembled from macromodels created in the subdomains, into which an analyzed structure is partitioned. This problem becomes particularly relevant for growing size and...
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublicationExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
The Optimal Location of Ground-Based GNSS Augmentation Transceivers
PublicationModern Global Navigation Satellite Systems (GNSS) allow for positioning with accuracies ranging from tens of meters to single millimeters depending on user requirements and available equipment. A major disadvantage of these systems is their unavailability or limited availability when the sky is obstructed. One solution is to use additional range measurements from ground-based nodes located in the vicinity of the receiver. The highest...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublicationAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
Fast Re-Design of Multi-Band Antennas by Means of Orthogonal-Direction Geometry Scaling and Local Parameter Tuning
PublicationApplication-driven design of antenna systems fosters a reuse of structures that have proven competitive in terms of their electrical and field performance, yet have to be re-designed for a new application area. In practice, it most often entails relocation of the operating frequencies or bandwidths, which is an intricate endeavor, normally requiring utilization of numerical optimization techniques. If the center frequencies of...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Integrating conventional nitrogen removal with anammox in wastewater treatment systems: Microbial metabolism, sustainability and challenges
PublicationThe various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2−), and nitrate (NO3−), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox)...
-
Bioreactors and biophoton-driven biohydrogen production strategies
PublicationGiven the current issues with global warming and rising greenhouse gas emissions, biohydrogen is a viable alternative fuel option. Technologies to produce biohydrogen include photo fermentation, dark fermentation, direct and indirect bio-photolysis, and two-stage fermentation. Biological hydrogen generation is a green and promising technique with mild reaction conditions and low energy consumption compared to thermochemical and...
-
Valorization of waste cabbage leaves by postharvest photochemical treatments monitored with a non-destructive fluorescence-based sensor
PublicationThe biosynthesis of polyphenolic compounds in cabbage waste, outer green leaves of white head cabbage (Brassica oleracea L. var. capitata subvar. alba), was stimulated by postharvest irradiation with UVB lamps or sunlight. Both treatments boosted the content of kaempferol and quercetin glycosides, especially in the basal leaf zone, as determined by the HPLC analysis of leaf extracts and by a non-destructive optical sensor. The...
-
Anomaly Detection in Railway Sensor Data Environments: State-of-the-Art Methods and Empirical Performance Evaluation
PublicationTo date, significant progress has been made in the field of railway anomaly detection using technologies such as real-time data analytics, the Internet of Things, and machine learning. As technology continues to evolve, the ability to detect and respond to anomalies in railway systems is once again in the spotlight. However, railway anomaly detection faces challenges related to the vast infrastructure, dynamic conditions, aging...