Search results for: deep convolutional neural network - Bridge of Knowledge

Search

Search results for: deep convolutional neural network

Filters

total: 514
filtered: 439

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: deep convolutional neural network

  • Equal Baseline Camera Array—Calibration, Testbed and Applications

    Publication

    - Applied Sciences-Basel - Year 2021

    This paper presents research on 3D scanning by taking advantage of a camera array consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera such as a possibility to operate in wide range of distances and in highly illuminated areas. In an outdoor environment, the array is a competitive alternative...

    Full text available to download

  • Mask Detection and Classification in Thermal Face Images

    Publication

    Face masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify...

    Full text available to download

  • Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks

    Publication
    • T. Dziubich
    • P. Białas
    • Ł. Znaniecki
    • J. Halman
    • J. Brzeziński

    - Year 2020

    One of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...

    Full text to download in external service

  • An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory

    Publication

    - EXPERT SYSTEMS - Year 2024

    Sentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...

    Full text to download in external service

  • Detecting Lombard Speech Using Deep Learning Approach

    Publication
    • K. Kąkol
    • G. Korvel
    • G. Tamulevicius
    • B. Kostek

    - SENSORS - Year 2023

    Robust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...

    Full text available to download

  • A Novel Spatio–Temporal Deep Learning Vehicle Turns Detection Scheme Using GPS-Only Data

    Publication

    - IEEE Access - Year 2023

    Whether the computer is driving your car or you are, advanced driver assistance systems (ADAS) come into play on all levels, from weather monitoring to safety. These modern-day ADASs use various assisting tools for drivers to keep the journey safe; these sophisticated tools provide early signals of numerous events, such as road conditions, emerging traffic scenarios, and weather warnings. Many urban applications, such as car-sharing...

    Full text available to download

  • A Simple Neural Network for Collision Detection of Collaborative Robots

    Publication

    Due to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...

    Full text available to download

  • Neural network training with limited precision and asymmetric exponent

    Publication

    Along with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...

    Full text available to download

  • Deep neural networks approach to skin lesions classification — A comparative analysis

    The paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...

    Full text to download in external service

  • System for monitoring road slippery based on CCTV cameras and convolutional neural networks

    Publication

    The slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...

    Full text available to download

  • Clothes Detection and Classification Using Convolutional Neural Networks

    Publication

    In this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...

    Full text to download in external service

  • DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION

    Publication
    • M. Maj
    • J. Borkowski
    • J. Wasilewski
    • S. Hrynowiecka
    • A. Kastrau
    • M. Liksza
    • P. Jasik
    • M. Treder

    - Year 2022

    Objective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...

    Full text to download in external service

  • Neural network model of ship magnetic signature for different measurement depths

    Publication

    This paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...

    Full text to download in external service

  • Explainable machine learning for diffraction patterns

    Publication
    • S. Nawaz
    • V. Rahmani
    • D. Pennicard
    • S. P. R. Setty
    • B. Klaudel
    • H. Graafsma

    - Journal of Applied Crystallography - Year 2023

    Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...

    Full text available to download

  • CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System

    Publication
    • A. Bhansali
    • R. Kumar Patra
    • P. Bidare Divakarachari
    • P. Falkowski-Gilski
    • G. Shivakanth
    • S. N. Patil

    - IEEE Access - Year 2024

    In the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...

    Full text available to download

  • Breast MRI segmentation by deep learning: key gaps and challenges

    Publication

    Breast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...

    Full text available to download

  • Pedestrian detection in low-resolution thermal images

    Over one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...

    Full text to download in external service

  • How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image

    Publication
    • T. Kocejko
    • N. Matuszkiewicz
    • J. Kwiatkowski
    • P. Durawa
    • A. Madajczak

    - SENSORS - Year 2024

    This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...

    Full text available to download

  • Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images

    Publication

    - Remote Sensing - Year 2022

    In remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...

    Full text available to download

  • Performance Analysis of Convolutional Neural Networks on Embedded Systems

    Publication

    - Year 2020

    Machine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...

    Full text to download in external service

  • Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features

    Nematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...

    Full text available to download

  • Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction

    Publication

    - Sustainability - Year 2023

    A reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....

    Full text available to download

  • Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks

    Deep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...

    Full text available to download

  • Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening

    Publication

    Familial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...

    Full text available to download

  • Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks

    Estimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...

    Full text available to download

  • 1D convolutional context-aware architectures for acoustic sensing and recognition of passing vehicle type

    Publication

    A network architecture that may be employed to sensing and recognition of a type of vehicle on the basis of audio recordings made in the proximity of a road is proposed in the paper. The analyzed road traffic consists of both passenger cars and heavier vehicles. Excerpts from recordings that do not contain vehicles passing sounds are also taken into account and marked as ones containing silence....

  • Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets

    Artificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...

    Full text available to download

  • Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2018

    This work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...

    Full text available to download

  • Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice

    The vulnerability of the speaker identity verification system to attacks using voice cloning was examined. The research project assumed creating a model for verifying the speaker’s identity based on voice biometrics and then testing its resistance to potential attacks using voice cloning. The Deep Speaker Neural Speaker Embedding System was trained, and the Real-Time Voice Cloning system was employed based on the SV2TTS, Tacotron,...

    Full text available to download

  • Detecting type of hearing loss with different AI classification methods: a performance review

    Publication
    • M. Kassjański
    • M. Kulawiak
    • T. Przewoźny
    • D. Tretiakow
    • J. Kuryłowicz
    • A. Molisz
    • K. Koźmiński
    • A. Kwaśniewska
    • P. Mierzwińska-Dolny
    • M. Grono

    - Year 2023

    Hearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...

    Full text to download in external service

  • Self-Supervised Learning to Increase the Performance of Skin Lesion Classification

    To successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...

    Full text available to download

  • Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy

    Publication

    - Year 2018

    The diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...

    Full text to download in external service

  • Outlier detection method by using deep neural networks

    Publication

    - Year 2017

    Detecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....

    Full text to download in external service

  • Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach

    To improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....

    Full text available to download

  • Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters

    Publication

    - Year 2019

    This paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...

    Full text available to download

  • Evaluation of Facial Pulse Signals Using Deep Neural Net Models

    Publication

    - Year 2019

    The reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency...

    Full text to download in external service

  • Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction

    Publication

    - Scientific Reports - Year 2023

    This work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...

    Full text available to download

  • Investigating Feature Spaces for Isolated Word Recognition

    Publication
    • P. Treigys
    • G. Korvel
    • G. Tamulevicius
    • J. Bernataviciene
    • B. Kostek

    - Year 2020

    The study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...

    Full text to download in external service

  • Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging

    Publication

    In the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...

    Full text to download in external service

  • Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks

    In this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...

    Full text available to download

  • Neural Architecture Search for Skin Lesion Classification

    Deep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...

    Full text available to download

  • THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN

    Publication

    - Year 2021

    In the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...

  • Style Transfer for Detecting Vehicles with Thermal Camera

    Publication

    - Year 2019

    In this work we focus on nighttime vehicle detection for intelligent traffic monitoring from the thermal camera. To train a Convolutional Neural Network (CNN) detector we create a stylized version of COCO (Common Objects in Context) dataset using Style Transfer technique that imitates images obtained from thermal cameras. This new dataset is further used for fine-tuning of the model and as a result detection accuracy on images...

  • Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model

    Publication

    This work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...

    Full text available to download

  • Semantic segmentation training using imperfect annotations and loss masking

    One of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...

    Full text to download in external service

  • CNN Architectures for Human Pose Estimation from a Very Low Resolution Depth Image

    Publication

    - Year 2018

    The paper is dedicated to proposing and evaluating a number of convolutional neural network architectures for calculating a multiple regression on 3D coordinates of human body joints tracked in a single low resolution depth image. The main challenge was to obtain a high precision in case of a noisy and coarse scan of the body, as observed by a depth sensor from a large distance. The regression network was expected to reason about...

    Full text to download in external service

  • Speech Analytics Based on Machine Learning

    Publication

    In this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...

    Full text to download in external service

  • Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality

    Publication
    • W. Nazar
    • K. Nazar
    • L. Daniłowicz-Szymanowicz

    - Life - Year 2024

    High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...

    Full text to download in external service

  • Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"

    The purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...

    Full text to download in external service

  • Intelligent Autonomous Robot Supporting Small Pets in Domestic Environment

    In this contribution, we present preliminary results of the student project aimed at the development of an intelligent autonomous robot supporting small pets in a domestic environment. The main task of this robot is to protect a freely moving small pets against accidental stepping on them by home residents. For this purpose, we have developed the mobile robot which follows a pet and makes an alarm signal when a human is approaching....

    Full text available to download