Filters
total: 341
filtered: 335
Search results for: PARTICLE SWARM OPTIMIZATION ALGORITHM
-
Design of dimensionally stable composites using efficient global optimization method
PublicationDimensionally stable material design is an important issue for space structures such as space laser communication systems, telescopes, and satellites. Suitably designed composite materials for this purpose can meet the functional and structural requirements. In this paper, it is aimed to design the dimensionally stable laminated composites by using efficient global optimization method. For this purpose, the composite plate optimization...
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublicationAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublicationUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Reduced-cost design closure of antennas by means of gradient search with restricted sensitivity update
PublicationDesign closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region...
-
Cost-efficient multi-objective design optimization of antennas in highly-dimensional parameter spaces
PublicationMulti-objective optimization of antenna structures in highly-dimensional parameter spaces is investigated. For expedited design, variable-fidelity EM simulations and domain patching algorithm are utilized. The results obtained for a monopole antenna with 13 geometry parameters are compared with surrogate-assisted optimization involving response surface approximation modeling.
-
Expedited simulation-driven design optimization of UWB antennas by means of response features
PublicationIn this work, a method for fast design optimization of broadband antennas is considered. The approach is based on a feature-based optimization (FBO) concept where reflection characteristics of the structure at hand are formulated in terms of suitably defined feature points. Redefinition of the design problem allows for reducing the design optimization cost, because the dependence of feature point coordinates on antenna dimensions...
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublicationDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
Pareto Ranking Bisection Algorithm for EM-Driven Multi-Objective Design of Antennas in Highly-Dimensional Parameter Spaces
PublicationA deterministic technique for fast surrogate-assisted multi-objective design optimization of antennas in highly-dimensional parameters spaces has been discussed. In this two-stage approach, the initial approximation of the Pareto set representing the best compromise between conflicting objectives is obtained using a bisection algorithm which finds new Pareto-optimal designs by dividing the line segments interconnecting previously...
-
Modelling of Objects Behaviour for Their Re-identification in Multi-camera Surveillance System Employing Particle Filters and Flow Graphs
PublicationAn extension of the re-identification method of modeling objects behavior in muti-camera surveillance systems, related to adding a particle filter to the decision-making algorithm is covered by the paper. A variety of tracking methods related to a single FOV (Field of Vision) are known, proven to be quite different for inter-camera tracking, especially in case of non-overlapping FOVs. The re-identification methods refer to the...
-
Reduced-cost constrained miniaturization of wideband antennas using improved trust-region gradient search with repair step
PublicationIn the letter, an improved algorithm for electromagnetic (EM)-driven size reduction of wideband antennas is proposed. Our methodology utilizes variable-fidelity EM simulation models, auxiliary polynomial regression surrogates, as well as multi-point response correction. The constraint handling is implicit, using penalty functions. The core optimization algorithm is a trust-region gradient search with a repair step added in order...
-
Power efficient thrust allocation algorithms in design of dynamically positioned ships
PublicationAssessment of power consumption on a Dynamically Positioned (DP) ship in the early design stage can assist crucial design choices. The study presents a comparison between two algorithms of optimal thrust allocation in a propulsion system for an over-actuated DP ship. Applied algorithms were Quadratic Programming (QP) and Non- dominated Sorting Genetic Algorithm II (NSGAII). Based on both approaches, tools were developed for ship...
-
Rotational Design Space Reduction for Cost-Efficient Multi-Objective Antenna Optimization
PublicationCost-efficient multi-objective design of antenna structures is presented. Our approach is based on design space reduction algorithm using auxiliary single-objective optimization runs and coordinate system rotation. The initial set of Pareto-optimal solutions is obtained by optimizing a response surface approximation model established in the reduced space using coarse-discretization EM simulation data. The optimization engine is...
-
Voltage and Reactive Power Load Flow Optimization in the Power System Using Fuzzy Logic
PublicationThe paper presents issues related to voltage control in the power system. An original method of reactive power flow optimization is considered, which leads to improved voltages in the power system and reduced active power losses. The optimization method is based on a procedure that employs fuzzy logic and is supported by a gradient search algorithm. The method has been implemented in PLANS software and verified.
-
Evolutionary Sets of Safe Ship Trajectories: problem dedicated operators
PublicationThe paper presents the optimization process of the evolutionary sets of safe ship trajectories method, with a focus on its problem-dedicated operators. The method utilizes a customized evolutionary algorithm to solve a constrained optimization problem. This problem is defined as finding a set of cooperating trajectories (a set is an evolutionary individual) of all the ships involved in the encounter situation. The resulting trajectories...
-
Szybka identyfikacja harmonicznych na podstawie oszczędnego próbkowania
PublicationW pracy przedstawiono implementację szybkiego algorytmu rekonstrukcji sygnału, opartego na teorii oszczędnego próbkowania, który może wykrywać harmoniczne w sygnale wejściowym. Zagadnienie rekonstrukcji sygnału jest problemem optymalizacyjnym rozwiązywanym za pomocą algorytmu programowania liniowego. Dodatkowo, aby przyspieszyć zbieżność rozwiązania zastosowano w rzadkiej dziedzinie sygnału filtr typu K-rank-order. Przeprowadzona...
-
Trawl-Door Shape Optimization with 3D CFD Models and Local Surrogates
PublicationDesign and optimization of trawl-doors are key factors in minimizing the fuel consumption of fishing vessels. This paper discusses optimization of the trawl-door shapes using high-fidelity 3D computational fluid dynamic (CFD) models. The accurate 3D CFD models are computationally expensive and, therefore, the direct use of traditional optimization algorithms, which often require a large number of evaluations, may be prohibitive....
-
Expedited Trust-Region-Based Design Closure of Antennas by Variable-Resolution EM Simulations
PublicationThe observed growth in the complexity of modern antenna topologies fostered a widespread employment of numerical optimization methods as the primary tools for final adjustment of the system parameters. This is mainly caused by insufficiency of traditional design closure approaches, largely based on parameter sweeping. Reliable evaluation of complex antenna structures requires full-wave electromagnetic (EM) analysis. Yet, EM-driven...
-
Patch size setup and performance/cost trade-offs in multi-objective antenna optimization using domain patching technique
PublicationA numerical study concerning multi-objective optimization of antenna structures using sequential domain patching (SDP) technique has been presented. We investigate the effect of various setups of the patch size on the operation of the SDP algorithm and possible trade-offs concerning the quality of the Pareto set found by SDP and the computational cost of the optimization process. Our considerations are illustrated using a UWB monopole...
-
Practical Eco-Driving Strategy for Suburban Electric Multiple Unit
PublicationIn this paper, a practical approach to velocity profile optimization for electric multiple unit was presented. The study focuses on a case of fast urban railway, which is a popular mean of transport across Tricity, Poland. Based on observations and measurements, a potential for improvement of energy efficiency by modifying the speed profile was recognized. In order to conduct necessary calculations, simulation model of railway...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublicationDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Optimal shape design of multi-element trawl-doors using local surrogate models
PublicationTrawl-doors have a large influence on the fuel consumption of fishing vessels. Design and optimiza-tion of trawl-doors using computational models are a key factor in minimizing the fuel consump-tion. This paper presents an optimization algorithm for the shape design of trawl-door shapes using computational fluid dynamic (CFD) models. Accurate CFD models are computationally expensive. Therefore, the direct use of traditional optimization...
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublicationOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
Multi-fidelity aerodynamic design trade-off exploration using point-by-point Pareto set identification
PublicationAerodynamic design is inherently a multi-objective optimization (MOO) problem. Determining the best possible trade-offs between conflicting aerodynamic objectives can be computationally challenging when carried out directly at the level of high-fidelity computational fluid dynamics simulations. This paper presents a computationally cheap methodology for exploration of aerodynamic design trade-offs. In particular, point-by-point...
-
Efficient Multi-Fidelity Design Optimization of Microwave Filters Using Adjoint Sensitivity
PublicationA simple and robust algorithm for computationally efficient design optimiza-tion of microwave filters is presented. Our approach exploits a trust-region (TR)-based algorithm that utilizes linear approximation of the filter response obtained using adjoint sensitivity. The algorithm is sequentially executed on a family of electromagnetic (EM)-simulated models of different fidelities, starting from a coarse-discretization one, and...
-
Genetic Programming for Workload Balancing in the Comcute Grid System
PublicationA genetic programming paradigm is implemented for reliability optimization in the Comcute grid system design. Chromosomes are generated as the program functions and then genetic operators are applied for finding Pareto-suboptimal task assignment and scheduling. Results are compared with outcomes obtained by an adaptive evolutionary algorithm.
-
Mobile devices and computing cloud resources allocation for interactive applications
PublicationUsing mobile devices such as smartphones or iPads for various interactive applications is currently very common. In the case of complex applications, e.g. chess games, the capabilities of these devices are insufficient to run the application in real time. One of the solutions is to use cloud computing. However, there is an optimization problem of mobile device and cloud resources allocation. An iterative heuristic algorithm for...
-
Fast EM-driven optimization using variable-fidelity EM models and adjoint sensitivities
PublicationA robust and computationally efficient technique for microwave design optimization is presented. Our approach exploits variable-fidelity electromagnetic (EM) simulation models and adjoint sensitivities. The low-fidelity EM model correction is realized by means of space mapping (SM). In the optimization process, the SM parameters are optimized together with the design itself, which allows us to keep the number...
-
Multi-fidelity robust aerodynamic design optimization under mixed uncertainty
PublicationThe objective of this paper is to present a robust optimization algorithm for computationally efficient airfoil design under mixed (inherent and epistemic) uncertainty using a multi-fidelity approach. This algorithm exploits stochastic expansions derived from the Non-Intrusive Polynomial Chaos (NIPC) technique to create surrogate models utilized in the optimization process. A combined NIPC expansion approach is used, where both...
-
Controlling nodal displacement of pantographic structures using matrix condensation and interior-point optimization: A numerical and experimental study
PublicationThis study presents an innovative approach for the precise control of nodal displacements in pantographic structures. The method is founded on the Matrix Condensation of Force Method, seamlessly integrated with an Interior Point Optimization algorithm. This combination offers a unique advantage by allowing users to manipulate displaced nodes within a defined coordination domain. Furthermore, this approach introduces the Interior...
-
Low-cost multi-objective optimization of antennas using Pareto front exploration and response features
PublicationIn the paper, a procedure for low-cost multi-objective optimization of antenna structures is presented. Our approach is based on exploration of the Pareto front representing the best possible trade-offs between conflicting objectives, here, the structure size and its electrical performance. Starting from the design representing the best in-band reflection level, subsequent Pareto-optimal designs are identified through local constrained...
-
On deterministic procedures for low-cost multi-objective design optimization of miniaturized impedance matching transformers
PublicationPurpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering...
-
Novel structure and design of compact UWB slot antenna
PublicationIn this paper, a novel structure of a compact UWB slot antenna is presented along with a simulation-driven design optimization algorithm for adjusting geometry parameters of the device. Our primary objective is to obtain small footprint of the structure while maintaining its acceptable electrical performance. It is achieved by introducing sufficiently large number of geometry degrees of freedom, including increased number of parameterized...
-
Expedited Multi-Objective Design Optimization of Miniaturized Microwave Structures Using Physics-Based Surrogates
PublicationIn this paper, a methodology for fast multi-objective design optimization of compact microwave circuits is presented. Our approach exploits an equivalent circuit model of the structure under consideration, corrected through implicit and frequency space mapping, then optimized by a multi-objective evolutionary algorithm. The correction/optimization of the surrogate is iterated by design space confinement and segmentation based on...
-
EM-Driven Multi-Objective Design of Impedance Transformers By Pareto Ranking Bisection Algorithm
PublicationIn the paper, the problem of fast multi-objective optimization of compact impedance matching transformers is addressed by utilizing a novel Pareto ranking bisection algorithm. It approximates the Pareto front by dividing line segments connecting the designs found in the previous iterations, and refining the obtained candidate solutions by means of poll-type search involving Pareto ranking. The final Pareto set is obtained using...
-
Hierarchical Estimation of Human Upper Body Based on 2D Observation Utilizing Evolutionary Programming and 'Genetic Memory'
PublicationNew method of the human body pose estimation based on single camera 2D observation is presented. It employs 3D model of the human body, and genetic algorithm combined with annealed particle filter for searching the global optimum of model state, best matching the object's 2D observation. Additionally, motion cost metric is employed, considering current pose and history of the body movement, favouring the estimates with the lowest...
-
Expedited Design Closure of Antennas By Means Of Trust-Region-Based Adaptive Response Scaling
PublicationIn the letter, a reliable procedure for expedited design optimization of antenna structures by means of trust-region adaptive response scaling (TR-ARS) is proposed. The presented approach exploits two-level electromagnetic (EM) simulation models. A predicted high-fidelity model response is obtained by applying nonlinear frequency and amplitude correction to the low-fidelity model. The surrogate created this way is iteratively rebuilt...
-
Multi-objective optimization of the ORC axial turbine for a waste heat recovery system working in two modes: cogeneration and condensation
PublicationDue to the demand of the district heating network and electric power grid ORC turbines can operate in the condensation and cogeneration modes. This approach requires the design of an expander which is characterized by high efficiency in each mode of operation. The paper is devoted to a multi-objective efficiency optimization of a one stage axial ORC turbine working on MM (Hexamethyldisiloxane). An Implicit Filtering algorithm (IF)...
-
Tracking Moving Objects in Video Surveillance Systems with Kalman and Particle Filters – A Practical Approach
PublicationThis Chapter focuses on the first type of object tracking algorithms, namely on Kalman and particle filters. A theory of these algorithms may be found in many publications, there are also reports on implementation of these approaches to object tracking in video. However, developers of VCA systems still face two important problems. The first one is related to obtaining accurate measurements of positions and sizes of the tracked...
-
Modernizacja układów geometrycznych toru z wykorzystaniem metody oceny wielokryterialnej
PublicationW pracy przedstawiono główne założenia opracowanej metody wielokryterialnej oceny stosowanej przy przebudowie układów geometrycznych toru. Określono kryteria wpływające na inwestycje modernizacyjne. Zdefiniowano zastosowaną w analizie funkcję celu. Przedstawiono przykład zastosowania algorytmu optymalizacyjnego z wykorzystaniem programu komputerowego
-
Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources
PublicationThe article addresses challenges in optimizing the operation of medium voltage networks, emphasizing optimizing network division points and selecting the best network configuration for minimizing power and energy losses. It critically reviews recent research on the issue of network configuration optimization. The optimization of the medium voltage power grid reconfiguration process was carried out using known optimization tools....
-
Ship Dynamic Positioning Based on Nonlinear Model Predictive Control
PublicationThe presented work explores the simulation test results of using nonlinear model predictive control algorithm for ship dynamic positioning. In the optimization task, a goal function with a penalty was proposed with a variable prediction step. The results of the proposed control algorithm were compared with backstepping and PID. The effect of estimation accuracy on the control quality with the implemented algorithms was investigated....
-
Selection of energy storage units by genetic algorithm for mitigating voltage deviations
PublicationIn recent years, energy storage units have become very popular. They are applied both for economic and technical purposes. Unfortunately, the cost of such devices is still high and selecting their proper location and rated power have to be performed precisely. In this paper, a Genetic-Algorithm-based optimization method for selecting the best configuration of energy storage units in the power network is proposed. The presented...
-
A robust design of a numerically demanding compact rat-race coupler
PublicationA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
A system for acoustic field measurement employing cartesian robot
PublicationA system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar) and particle velocity (vector) quantities. The aim of the...
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublicationMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
Efektywna metoda wyznaczania trasy statków żaglowych
PublicationZaproponowano metodę wyznaczania suboptymalnej trasy statków żaglowych poruszających się w ograniczonym akwenie morskim. Uwzględniono przy tym dynamikę tego środowiska w tym warunki pogodowe oraz charakterystyki prędkościowe statków żaglowych. Jako kryterium optymalizacji przyjęto czas żeglugi T oraz liczbę wykonanych manewrów ω. Zaprojektowano heurystyczny algorytm oraz odpowiednią aplikację wyznaczania trasy dla ustalonych punktów...
-
Computational Bar Size Optimization of Single Layer Dome Structures Considering Axial Stress and Shape Disturbance
PublicationA computational method is proposed in this paper to minimize the material usage in the construction of modern spatial frame structures by prestressing a minimal number of members. The computational optimization is conducted in two steps. Firstly, a numerical model of a single-layer dome structure is used to minimize the cross-sectional area through several iterations. Different assumed ratios (r) ranging from 0.95 to 0.75 are multiplied...
-
On low-fidelity models for variable-fidelity simulation-driven design optimization of compact wideband antennas
PublicationThe paper addresses simulation-driven design optimization of compact antennas involving variable-fidelity electromagnetic (EM) simulation models. Comprehensive investigations are carried out concerning selection of the coarse model discretization density. The effects of the low-fidelity model setup on the reliability and computational complexity of the optimization process are determined using a benchmark set of three ultra-wideband...
-
Proximal primal–dual best approximation algorithm with memory
PublicationWe propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous...