Filters
total: 142
filtered: 137
Chosen catalog filters
Search results for: surface elasticity
-
Tire/Road Noise On Poroelastic Road Surfaces - Results Of Laboratory Measurements
PublicationTire/road noise is the most important part of traffic noise for medium and high speed driving both in the case of passenger cars and trucks. The potential to make modification of tires that significantly reduce tire/road noise in nearly over, at least for conventional tires so the only promising action is to improve road pavements. One of the innovative solutions is poroelastic road pavement (PERS) that reduces airflow related...
-
Experimental Studies of Concrete-Filled Composite Tubes under Axial Short- and Long-Term Loads
PublicationThe paper presents experimental studies on axially compressed columns made of concrete-filled glass fiber reinforced polymer (GFRP) tubes. The infill concrete was C30/37 according to Eurocode 2. The investigated composite pipes were characterized by different angles of fiber winding in relation to the longitudinal axis of the element: 20, 55 and 85 degrees. Columns of two lengths, 0.4 m and 2.0 m, were studied. The internal diameter...
-
Nonlocalized thermal behavior of rotating micromachined beams under dynamic and thermodynamic loads
PublicationRotating micromachined beams are one of the most practical devices with several applications from power generation to aerospace industries. Moreover, recent advances in micromachining technology have led to huge interests in fabricating miniature turbines, gyroscopes and microsensors thanks to their high quality/reliability performances. To this end, this article is organized to examine the axial dynamic reaction of a rotating...
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublicationFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
Effect of coarse grain aggregate on strength parameters of two-stage concrete
Publication. Two-stage concrete (TSC) is a special type of concrete that the method of its construction and implementation is different from conventional one. In TSC, coarse aggregate particles are first placed in the formwork and voids between them are subsequently injected with a special cementations mixture. TSC has been successfully used in many applications, such as underwater construction, casting concrete sections congested with reinforcement...
-
Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model
PublicationThis article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and excess carrier density. The proposed model is developed to account for the optical heating that occurs through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order serves as the theoretical framework...
-
The influence of polypropylene-block/graft-polycaprolactone copolymers on melt rheology, morphology, and dielectric properties of polypropylene/polycarbonate blends
PublicationThe paper discusses the relationship between rheology and morphology of immiscible polypropylene (matrix))/polycarbonate (dispersed phase) blends compatibilized with novel polypropylene-polycaprolactone block and graft copolymers. Transmission electron microscopy (TEM) experiments revealed uniform droplet morphologies and a reduction of the average size of the dispersed phase upon addition of the compatibilizer. The results suggested...
-
The impact of methods the stochastic analysis on swimming safety of multihull floating units (Part1)
PublicationThe presented article concerns the application of the methods of the stochastic analysis to solve differential equations for multihull catamaran-type floating unit. There was described the continuous process of Markov and the method of equations of Focker-Planck-Kolmogorov. The analysis of dynamics of the multihull unit was carried out with the assumption that the system model is the linear model with six degrees of freedom, on...
-
Buckling resistance of a metal column in a corrugated sheet silo - experiments and non-linear stability calculations
PublicationThe results of experimental and numerical tests of a single corrugated sheet silo column’s buckling resistance are presented in this study. The experiments were performed in a real silo with and without bulk solid (wheat). A very positive impact of the bulk solid on the column buckling resistance occurred. The experimental results were first compared to the buckling resistance calculated by Eurocode 3 formulae. The comparison revealed that...
-
ANALYSIS OF ROLLING RESISTANCE OF TIRES WITH RUN FLAT INSERT APPLYING DRUM METHOD AND RADIAL CHARACTERISTIC
PublicationThis paper presents analysis of rolling resistance of tires with RUN FLAT insert applying drum method and radial characteristic. The conducted studies indicated changes in operational properties of wheel, occurring as a result of inflation pressure drop in the wheel. As regards radial elasticity, such changes result in significant drop of radial rigidity and increase of static deflection and increase of tire rolling resistance....
-
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
PublicationIn this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublicationThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
On the deformation and frequency analyses of SARS-CoV-2 at nanoscale
PublicationThe SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most significant impact on people's health, economy, and lifestyle around the world today. In the present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. The theory of shell structures in mechanics is used to derive the governing...
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Tensile validation tests with failure criteria comparison for various GFRP laminates
PublicationThe paper studies the mechanical properties of glass fibre reinforced polymers (GFRP) with various types and orientation of reinforcement. Analyzed specimens manufactured in the infusion process are made of polymer vinyl ester resin reinforced with glass fibres. Several samples were examined containing different plies and various fibres orientation [0, 90] or [+45, –45]. To assess the mechanical parameters of laminates, a series...
-
Liquefaction of alder wood as the source of renewable and sustainable polyols for preparation of polyurethane resins
PublicationLiquefaction of wood-based biomass gives different polyol properties depending on the reagents used. In this article, alder wood sawdust was liquefied with glycerol and poly(ethylene glycol) solvents. Liquefaction reactions were carried out at temperatures of 120, 150 and 170 °C. The obtained bio-polyols were analyzed in order to establish the process efficiency, hydroxyl number, acid value, viscosity and structural characteristics...
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Elastic Fender-Dolphin Interaction for Economic Design of Berthing Dolphins
PublicationThe study addresses the question of the possible design benefits when considering the interaction between a modern marine modular rubber fender and a steel tubular pile substructure of a berthing dolphin. Absorption of the berthing kinetic energy of the vessel by a dualelasticity pile-fender berthing system is described in detail using the interactive treatment method (ITM). Application of the ITM is illustrated by a calculative...
-
The effect of shear deformations' rotary inertia on the vibrating response of multi-physic composite beam-like actuators
PublicationIn consecutive studies on flexomagneticity (FM), this work investigates the flexomagnetic reaction of a vibrating squared multi-physic beam in finite dimensions. It is assumed that the bending and shear deformations cause rotary inertia. In the standard type of the Timoshenko beam the rotary inertia originated from shear deformations has been typically omitted. It means the rotary inertia resulting from shear deformation is a new...
-
Influence of the Addition of Recycled Aggregates and Polymer Fibers on the Properties of Pervious Concrete
PublicationThe aim of the study was to check the possibility of reusing aggregate from recycled concrete waste and rubber granules from car tires as partial substitution of natural aggregate. The main objective was to investigate the effects of recycled waste aggregate modified with polymer fibers on the compressive and flexural strength, modulus of elasticity and permeability of pervious concrete. Fibers with a multifilament structure and...
-
Bio-Based Polyurethane Networks Derived from Liquefied Sawdust
PublicationThe utilization of forestry waste resources in the production of polyurethane resins is a promising green alternative to the use of unsustainable resources. Liquefaction of wood-based biomass gives polyols with properties depending on the reagents used. In this article, the liquefaction of forestry wastes, including sawdust, in solvents such as glycerol and polyethylene glycol was investigated. The liquefaction process was carried...
-
Nonlocal Vibration of Carbon/Boron-Nitride Nano-hetero-structure in Thermal and Magnetic Fields by means of Nonlinear Finite Element Method
PublicationHybrid nanotubes composed of carbon and boron-nitride nanotubes have manifested as innovative building blocks to exploit the exceptional features of both structures simultaneously. On the other hand, by mixing with other types of materials, the fabrication of relatively large nanotubes would be feasible in the case of macroscale applications. In the current article, a nonlinear finite element formulation is employed to deal with...
-
Eco-friendly modification of bitumen: The effects of rubber wastes and castor oil on the microstructure, processability and properties
PublicationThe bitumen industry in the European Union is facing several difficulties, including rising demand, unstable oil supply, rising prices for synthetic polymer modifiers, and a focus on lowering carbon footprint. Bitumen modification with crumb rubber (CR) is one of the most promising solution to these challenges. However, CR-modified bitumen have poor processability and low storage stability. To overcome these flaws we are introducing...
-
Pose-Configurable Generic Tracking of Elongated Objects
PublicationElongated objects have various shapes and can shift, rotate, change scale, and be rigid or deform by flexing, articulating, and vibrating, with examples as varied as a glass bottle, a robotic arm, a surgical suture, a finger pair, a tram, and a guitar string. This generally makes tracking of poses of elongated objects very challenging. We describe a unified, configurable framework for tracking the pose of elongated objects, which...
-
Experimental and Numerical Investigation of Mechanical Properties of Lightweight Concretes (LWCs) with Various Aggregates
PublicationHigh requirements for the properties of construction materials and activities directed at environment protection are reasons to look for new solutions in concrete technology. This research was directed at solutions affecting the reduction of energy consumption and CO2 emissions. The use of lightweight concretes (LWCs) allows one to meet both conditions at the same time. The purpose of the research presented in this paper was to...
-
Adaptive Positioning Systems Based on Multiple Wireless Interfaces for Industrial IoT in Harsh Manufacturing Environments
PublicationAs the industrial sector is becoming ever more flexible in order to improve productivity, legacy interfaces for industrial applications must evolve to enhance efficiency and must adapt to achieve higher elasticity and reliability in harsh manufacturing environments. The localization of machines, sensors and workers inside the industrial premises is one of such interfaces used by many applications. Current localization-based systems...
-
THE ANALYSIS OF THE INFLUENCE OF STRESS DISTRIBUTION ON WEAR PROFILE IN LUBRICATED SLIDING CONTACT OF UHMW-PE VS TITANIUM Ti-13Nb-13Zr ALLOY
PublicationMetal – polymer sliding contacts are a typical combination in industry and medicine. For decades such a set of materials has been the primary choice in human joints endoprosthetic technology. In this paper tribological issues of are presented from a research on the potential for practical use of Ti-13Nb-13Zr/UHMW-PE couple for orthopedic endoprosthesis. In tests on simplified models it is critically important to carefully...
-
Biomechanical causes for failure of the Physiomesh/Securestrap system
PublicationThis study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh...
-
Implementation of Non-Probabilistic Methods for Stability Analysis of Nonlocal Beam with Structural Uncertainties
PublicationIn this study, a non-probabilistic approach based Navier’s Method (NM) and Galerkin Weighted Residual Method (GWRM) in term of double parametric form has been proposed to investigate the buckling behavior of Euler-Bernoulli nonlocal beam under the framework of the Eringen's nonlocal elasticity theory, considering the structural parameters as imprecise or uncertain. The uncertainties in Young’s modulus and diameter of the beam are...
-
On mechanics of piezocomposite shell structures
PublicationThis study presents an original and novel investigation into the mechanics of piezo-flexo-magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear deformation shell model, stresses and strains are acquired. By imposing Hamilton's principle and the von Kármán approach, the governing equations...
-
On a 3D material modelling of smart nanocomposite structures
PublicationSmart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit various advanced properties, ranging from lower order phenomena like piezoelectricity and piezomagneticity, to higher order effects including flexoelectricity...
-
On a flexomagnetic behavior of composite structures
PublicationThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
Rotation Triggers Nucleotide-Independent Conformational Transition of the Empty β Subunit of F1-ATPase
PublicationF1-ATPase (F1) is the catalytic portion of ATP synthase, a rotary motor protein that couples proton gradients to ATP synthesis. Driven by a proton flux, the F1 asymmetric γ subunit undergoes a stepwise rotation inside the α3β3 headpiece and causes the β subunits’ binding sites to cycle between states of different affinity for nucleotides. These concerted transitions drive the synthesis of ATP from ADP and phosphate. Here, we study...
-
Investigations on fracture in reinforced concrete beams in 3-point bending using continuous micro-CT scanning
PublicationThis study explores a fracture process in rectangular reinforced concrete (RC) beams subjected to quasi-static three-point bending. RC beams were short and long with included longitudinal reinforcement in the form of a steel or basalt bar. The ratio of the shear span to the effective depth was 1.5 and 0.75. The focus was on the load–deflection diagram and crack formation. Three-dimensional (3D) analyses of the size and distribution...
-
Effect of slag coal ash and foamed glass on the mechanical properties of two-stage concrete
PublicationTwo-stage concrete (TSC) is known by various names such as colcrete, Polcrete, preplaced aggregate concrete and prepacked concrete. It is different from traditional concrete in two fundamental ways, namely method of construction and mix proportion. Two-stage concrete (TSC) is defined as firstly, coarse aggregates are placed into the formwork and grout is applied to fill in the between coarse aggregate particles voids. Secondly,...
-
On the Bending of Multilayered Plates Considering Surface Viscoelasticity
PublicationWe discuss the bending resistance of multilayered plates taking into account surface/interfacial viscoelasticity. Within the linear surface viscoelasticity we introduce the surface/interfacial stresses linearly dependent on the history of surface strains. In order to underline the surface viscoelasticity contribution to the bending response we restrict ourselves to the elastic behaviour in the bulk. Using the correspondence principle...
-
Surface finite viscoelasticity and surface anti-plane waves
PublicationWe introduce the surface viscoelasticity under finite deformations. The theory is straightforward generalization of the Gurtin–Murdoch model to materials with fading memory. Surface viscoelasticity may reflect some surface related creep/stress relaxation phenomena observed at small scales. Discussed model could also describe thin inelastic coatings or thin interfacial layers. The constitutive equations for surface stresses are...