Filters
total: 1880
displaying 1000 best results Help
Search results for: recurrent neural networks
-
A new analyzer based on pellistor sensor with neural network data postprocessing for measurement of hydrocarbons in lower explosive limit range
PublicationW pracy przedstawiono rezultaty pierwszego etapu badań nad nowym typem analizatora do oznaczania stężenia wodoru i lotnych węglowodorów w zakresie dolnej granicy wybuchowości. Analizator ten zbudowano w oparciu o pojedynczy czujnik pelistorowy z układem przetwarzania danych wykorzystującym sztuczną sieć neuronową.
-
Electrical Interface Parameters of PEDOT: PSS: Effect of Electrodeposition Charge Evaluated Under Body Conditions for Neural Electrode Applications
PublicationThis study explores the influence of the deposition charge of poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) on its electrical interface parameters. For this purpose, PEDOT:PSS was fabricated by electrodeposition on commercial platinum electrodes with the time limited by different charges (1, 3, 6, 9 mC). Further, the electrodes were characterized regarding their electrical interface such as interfacial...
-
International Journal of Distributed Sensor Networks
Journals -
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications
Journals -
Multicast Traffic Throughput Maximization through Dynamic Modulation and Coding Scheme Assignment in Wireless Sensor Networks
Publication -
Fast service restoration under shared protection at lightpath level in survivable WDM mesh grooming networks
PublicationW artykule zaproponowano nowe podejście do optymalizacji rozdziału zasobów w przeżywalnych sieciach optycznych z agregacją strumieni ruchu. Zaproponowana metoda bazuje na wierzchołkowym kolorowaniu grafu konfliktów. Jest pierwszym podejściem, dedykowanym sieciom optycznym z agregację strumieni ruchu z pełną zdolnością do konwersji długości fal, która nie powoduje wydłużenia ściezek zabezpieczjących, a więc zapewnia szybkie odtwarzanie...
-
Selfishness Detection in Mobile Ad Hoc Networks: How Dissemination of Indirect Information Turns into Strategic Issue
PublicationDla środowiska sieci mobilnej ad hoc przedyskutowano wymienność pomiędzy wydatkiem energetycznym węzła egoistycznego a obniżaniem jego metryki reputacyjnej. Badania symulacyjne wskazują, że atakom polegającym na selektywnym usuwaniu pakietów można przeciwdziałać poprzez datacentryczny system reputacyjny bazujący na potwierdzeniach końcowych, który nakazuje jednakowo uaktualniać metryki reputacyjne dla wszystkich węzłów na źle zachowującej...
-
Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks
Publication -
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublicationQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings
PublicationThe paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known...
-
Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Publication -
Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings
Publication -
Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study
Publication -
Digital Communications and Networks
Journals -
Neural, Parallel and Scientific Computations
Journals -
A new fuzzy model of multi-criteria decision support based on Bayesian networks for the urban areas' decarbonization planning
Publication -
A new approach to inter-layer sharing providing differentiated protection services in survivable IP-MPLS/WDM networks
PublicationArtykuł omawia zagadnienie ochrony transmisji o charakterze połączeniowym w sieciach wielowarstwowych IP-MPLS/WDM. W szczególności prezentuje nową metodę współdzielenia międzywarstwowego zasobów ścieżek zabezpieczających gwarantującą szybkie odtwarzanie uszkodzonych połączeń (nawet o 40% szybciej w porównaniu z powszechnie stosowaną metodą).
-
ADAPTIVE PREDICTIONS OF THE EURO/ZŁOTY CURRENCY EXCHANGE RATE USING STATE SPACE WAVELET NETWORKS AND FORECAST COMBINATIONS
PublicationThe paper considers the forecasting of the euro/Polish złoty (EUR/PLN) spot exchange rate by applying state space wavelet network and econometric forecast combination models. Both prediction methods are applied to produce one-trading-day- ahead forecasts of the EUR/PLN exchange rate. The paper presents the general state space wavelet network and forecast combination models as well as their underlying principles. The state space...
-
Knowledge management in the IPv6 migration process
PublicationThere are many reasons to deploy IPv6 protocol with IPv4 address space depletion being the most obvious. Unfortunately, migration to IPv6 protocol seems slower than anticipated. To improve pace of the IPv6 deployment, authors of the article developed an application that supports the migration process. Its main purpose is to help less experienced network administrators to facilitate the migration process with a particular target...
-
Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples
Publication -
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland—Swietokrzyskie Voivodeship
Publication -
Using Deep Neural Network Methods for Forecasting Energy Productivity Based on Comparison of Simulation and DNN Results for Central Poland – Swietokrzyskie Voivodeship
Publication -
Data augmentation for improving deep learning in image classification problem
PublicationThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublicationThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Dispersive Delay Structures With Asymmetric Arbitrary Group-Delay Response Using Coupled-Resonator Networks With Frequency-Variant Couplings
PublicationThis article reports the design of coupled-resonatorbased microwave dispersive delay structures (DDSs) with arbitrary asymmetric-type group delay response. The design process exploits a coupling matrix representation of the DDS circuit as a network of resonators with frequency-variant couplings (FVCs). The group delay response is shaped using complex transmission zeros (TZs) created by dispersive cross-couplings. We also present an...
-
Thermal analysis and experimental verification of permanent magnet synchronous motor by combining lumped-parameter thermal networks with analytical method
Publication -
Application of Bayesian networks for inferring cause–effect relations from gene expression profiles of cancer versus normal cells
Publication -
Fiber optic interface channels for united data and power supply transmission for neutral interaction application in signal transmission networks
Publication -
International Journal of Computer Networks & Communications (IJCNC)
Journals -
Rating by detection: an artifact detection protocol for rating EEG quality with average event duration
PublicationQuantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically...
-
Particle swarm optimization–artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid–liquid microextraction
Publication -
Neurocontrolled Car Speed System
PublicationThe features of the synthesis of neural controllers for the car speed control system are considered in this article. The task of synthesis is to determine the weight coefficients of neural networks that provide the implementation of proportional and proportional-integralderivative control laws. The synthesis of controllers is based on an approach that uses a reversed model of the standard. A model of the car speed control system with...
-
Ryszard Katulski prof. dr hab. inż.
People -
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublicationBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Optymalizacja zasad koegzystencji sieci standardów Bluetooth i IEEE 802.11 = Optimization of Bluetooth and IEEE 802.11 networks co-existence
PublicationZ uwagi na rosnącą popularność standardów Bluetooth (BT) i IEEE 802.11b (Wi-Fi ) można się z nimi spotkać praktycznie wszędzie. Gwałtowny wzrost liczby urządzeń różnych technologii ma także swoje negatywne strony. Stosowanie coraz większej liczby urządzeń różnych systemów radiokomunikacyjnych powoduje wzrost poziomu zaburzeń elektromagnetycznych. W konsekwencji działanie różnych sieci bezprzewodowych pracujących w bliskim zasięgu...
-
Signals of the NB-IoT network generated by using the radiocommunication tester R&S CMW500
Open Research DataThe published dataset contains signals of the NB-IoT networks generated in the controlled conditions by using the Rohde&Schwarz CMW500 radiocommunication tester and recorded by USRP-X310 device. A test signals of the NB-IoT networks operating in the in-band, standalone and guard-band modes were captured.
-
Zastosowanie algorytmu ewolucyjnego do uczenia neuronowego regulatora napięcia generatora synchronicznego. Evolutionary algorithm for training a neural network of synchronous generator voltage controller
PublicationNajpopularniejsza metoda uczenia wielowarstwowych sieci neuronowych -metoda wstecznej propagacji błędu - charakteryzuje się słabą efektywnością. Z tego względu podejmowane są próby stosowania innych metod do uczenia sieci. W pracy przedstawiono wyniki uczenia sieci realizującej regulator neuronowy, za pomocą algorytmu ewolucyjnego. Obliczenia symulacyjne potwierdziły dobrą zbieżność algorytmu ewolucyjnego w tym zastosowaniu.
-
Bartosz Puchalski dr inż.
People -
Computational intelligence methods in production management
PublicationThis chapter presents a survey of selected computational intelligence methods used in production management. This group of methods includes, among others, approaches based on the artificial neural networks, the evolutionary algorithms, the fuzzy logic systems and the particle swarm optimization mechanisms. From the abovementioned methods particularly noteworthy are the evolutionary and the particle swarm algorithms, which are successfully...
-
Multicast Traffic Throughput Maximization through Joint Dynamic Modulation and Coding Schemes Assignment, and Transmission Power Control in Wireless Sensor Networks
Publication -
Journal of Sensor and Actuator Networks
Journals -
Training of Deep Learning Models Using Synthetic Datasets
PublicationIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Methods of Artificial Intelligence for Prediction and Prevention Crisis Situations in Banking Systems
PublicationIn this paper, a support vector machine has been studied due to prediction of bank crisis. To prevent outcomes of crisis situations, artificial neural networks have been characterized as applied to stock market investments, as well as to test the credibility of the bank's customers. Finally, some numerical experiments have been presented.
-
Cluster Computing-The Journal of Networks Software Tools and Applications
Journals -
Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition
PublicationThe idea that synchronous neural activity underlies cognition has driven an extensive body of research in human and animal neuroscience. Yet, insufficient data on intracranial electrical connectivity has precluded a direct test of this hypothesis in a whole-brain setting. Through the lens of memory encoding and retrieval processes, we construct whole-brain connectivity maps of fast gamma (30-100 Hz) and slow theta (3-8 Hz) spectral...
-
A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multi-Head Convolutional Attention
PublicationTogether with fast advancement of the Internet of Things (IoT), smart healthcare applications and systems are equipped with increasingly more wearable sensors and mobile devices. These sensors are used not only to collect data, but also, and more importantly, to assist in daily activity tracking and analyzing of their users. Various human activity recognition (HAR) approaches are used to enhance such tracking. Most of the existing...
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublicationThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Productivity Enhancement by Prediction of Liquid Steel Breakout during Continuous Casting Process in Manufacturing of Steel Slabs in Steel Plant Using Artificial Neural Network with Backpropagation Algorithms
Publication