Search results for: hydrogen energy
-
The impact of graphene on the electrochemical performance of BiMeVOx catalysts in water splitting
PublicationThe development of efficient catalysts for electrochemical water splitting has become a significant contemporary challenge. Transition metal oxides, due to their unique electrochemical properties, have emerged as promising candidates. Among these, a group of BiMeVOx-based compounds shows particular potential for practical applications in hydrogen and oxygen evolution reactions. However, improvement is still necessary to achieve...
-
Structural and catalytic properties of ceria layers doped with transition metals for SOFCs fueled by biogas
PublicationThe aim of this paper was to investigate an influence of the nanocrystalline Ce0.8A0.2O2-δ (A = Mn, Fe, Co, Ni, Cu) materials on the direct internal reforming of biogas in SOFC. Structural analysis of fabricated compounds has been done. An in-situ analysis of a composition of outlet gases from operating SOFC was performed using FTIR spectroscopy with simultaneous electrical tests. It was found out, that type of dopant strongly...
-
Investigation of praseodymium and samarium co-doped ceria as an anode catalyst for DIR-SOFC fueled by biogas
PublicationThe Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer. The XRD, SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore, the electrical...
-
MnxCo3-xO4 spinel oxides as efficient oxygen evolution reaction catalysts in alkaline media
PublicationThe design of efficient electrocatalysts for oxygen evolution reaction (OER) is an essential task in developing sustainable water splitting technology for the production of hydrogen. In this work, manganese cobalt spinel oxides with a general formula of MnxCo3-xO4 (x=0, 0.5, 1, 1.5, 2) were synthesised via a soft chemistry method. Non-equilibrium mixed powder compositions were produced, resulting in high electrocatalytic activity....
-
Effect of small quantities of potassium promoter and steam on the catalytic properties of nickel catalysts in dry/combined methane reforming
PublicationCarbon dioxide and methane are two of the principal greenhouse gases. Reduction of their content in the atmosphere is currently the subject of much worldwide research. Dry and combined reforming of methane are effective methods of CO2 and CH4 utilization and production of synthesis gas (syngas) in chemical technology. Testing of catalysts that provide the desired H2/CO ratio and long operation time is one of the critical aspects...
-
Characterization of novel GdBa0.5Sr0.5Co2−xFexO5+δ perovskites for application in IT-SOFC cells
Publication -
High Cu content LaNi1-xCuxO3-δ perovskites as candidate air electrode materials for Reversible Solid Oxide Cells
Publication -
Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2−xMxNiO4+δ (M = Ba, Sr) cathode materials
Publication -
Core-shell cobalt particles Co@CoO loaded on nitrogen-doped graphene for photocatalytic water-splitting
Publication -
Formation of ultra-small Mn3O4 nanoparticles trapped in nanochannels of hollow carbon spheres by nanoconfinement with excellent supercapacitor performance
Publication -
CFD modeling of a diesel evaporator used in fuel cell systems
Publication -
How to determine whether an electron transfer channel is type-II or S-scheme in g–C3N4–based photocatalysts? A critical review
Publication -
Impact of pretreatment on food waste for biohydrogen production: A review
Publication -
Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen
Publication -
A critical review on limitations and enhancement strategies associated with biohydrogen production
Publication -
Biohydrogen production from seagrass via novel energetically efficient ozone coupled rotor stator homogenization
Publication -
Characteristics of La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3-δ -supported micro-tubular solid oxide fuel cells with LaCo 0.4 Ni 0.6-x Cu x O 3-δ cathodes
PublicationIn this study, micro-tubular solid oxide fuel cells (T-SOFCs) with extruded La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte as the mechanical support and LaCo0.4Ni0.6O3-δ (LCNO) or LaCo0.4Ni0.4Cu0.2O3-δ (LCNCO) as cathodes were prepared and characterized. Partial substitution of Cu for the Ni-ion positions in the LCNO lattices was found to significantly enhance the densification and accelerate the grain growth. The porosity-corrected...
-
Laser induced formation of copper species over TiO2 nanotubes towards enhanced water splitting performance
PublicationWe proposed fast and scalable route where the ordered TiO2 nanotubes coated with thin copper layers were annealed by the laser beam of 355 nm wavelength at different fluencies in the range of 15–120 mJ/cm2. As a result, copper species are integrated with the titania substrate and the formed material exhibits unique optical absorption bands in the visible range. Moreover, X-ray photoelectron spectroscopy analysis reveals the formation...
-
Exsolution of Ni nanoparticles on the surface of cerium and nickel co-doped lanthanum strontium titanate as a new anodic layer for DIR-SOFC. Anti-coking potential and H2S poisoning resistance of the prepared material
PublicationThe aim of this study was to evaluate a new catalytic material for biogas fueled DIR-SOFC. This material was a perovskite-type SrTiO3 doped with La, Ce and Ni of a general formula La0.27Sr0.54Ce0.09Ni0.1Ti0.9O3-σ (LSCNT). Additional preparation steps were undertaken to promote a nickel exsolution process. Heat post-treatment of powders in a humidified H2 resulted in an intensive growth of nickel nanoparticles (NPs) while the temperature...
-
Influence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinel
PublicationIn the study, the surface of the Crofer 22APU ferritic steel was modified with gadolinium oxide nanoparticles and a protective-conducting layer consisting of the MnCo2O4 spinel. This system was studied in the context of application in IT-SOFC interconnects. Four types of samples were studied: unmodified steel, steel coated with a manganese-cobalt spinel layer, steel modified with gadolinium oxide nanoparticles, and a system consisting...
-
The effect of Fe on chemical stability and oxygen evolution performance of high surface area SrTix-1FexO3-δ mixed ionic-electronic conductors in alkaline media
PublicationDevelopment of environmentally friendly, high performing oxygen evolution reaction (OER) catalysts is an important research challenge. In this work, iron doped strontium titanates with a general formula SrTi1-xFexO3-δ (x = 0.35, 0.50, 0.70, 0.90, and 1.00) denoted as STFx, were synthesized via a solid state reaction technique and characterized in terms of oxygen evolution reaction electrocatalysis in an alkaline electrolyte (0.1...
-
Preparation of methanation catalysts for high temperature SOEC by β-cyclodextrin-assisted impregnation of nano-CeO2 with transition metal oxides
PublicationThe aim of this work was to prepare and examine the catalytic activity of nanometric CeO2 decorated with transition metal oxides – Ni, Co, Cu, Fe and Mn – towards a high-temperature methanation process under SOEC CO2/H2O simulated co-electrolysis conditions. Samples were prepared using the wet impregnation method via the conventional process and with the addition of native cyclodextrin. The influence of β-cyclodextrin (βCD) onto...
-
High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/La0.8Sr0.2Ga0.8Mg0.2O3−δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
PublicationIn this study, intermediate-temperature solid oxide fuel cells (IT-SOFCs) with a nine-layer structure are constructed via a simple method based on the cost-effective tape casting-screen printing-co-firing process with the structure composed of a NiO-based four-layer anode, a Sm0.2Ce0·8O2-δ(SDC)/La0·8Sr0.2Ga0.8Mg0·2O3−δ (LSGM)/SDC tri-layer electrolyte, and an La0·6Sr0·4Co0·2Fe0·8O3-δ (LSCF)-based bi-layer cathode. The resultant...
-
Physical and sealing properties of BaO–Al2O3–SiO2–CaO–V2O5 glasses for solid oxide fuel cell applications
PublicationIn this study, the properties of BaO–Al2O3–SiO2 (SAB) glasses incorporated with CaO and V2O5 as the network modifier and additive, respectively, are evaluated. The electrical resistivities of the glasses decrease upon the addition of CaO but increase upon increasing their V2O5 content because the V5+ species lower the ionic mobility of the glasses. The addition of V2O5 improves the wettability of the glasses on the Crofer 22 APU...
-
Electrolytic deposition of reactive element thin films on Crofer 22 APU and evaluation of the resulting high-temperature corrosion protection properties at 700 °C–900 °C
PublicationThis article presents electrolytic deposition of thin Rare Earth (RE) coatings on Crofer 22 APU stainless steel substrates for high temperature applications, such as interconnects in solid oxide cell stacks. The deposition of coatings based on yttrium-, gadolinium-, lanthanum-, and cerium nitrates is discussed. The high temperature corrosion properties of surface-modified steels were examined using thermogravimetry and electrical...
-
Cu supported on various oxides as a candidate catalyst for dry methane reforming in DIR-SOFCs systems
PublicationA series of Cu-support systems were tested as potential candidates for DIR-SOFC (Direct Internal Reforming SOFC) catalysts towards a dry reforming of methane (DRM). The various supports (-Al2O3, CeO2, ZrO2, SrTiO3) with comparable specific surface area (SSA), and additionally -Al2O3 with SSA an order of magnitude larger than that of the other supports has been applied. The obtained Cu-support systems were characterized in terms...
-
High-performance NdSrCo2O5+δ–Ce0.8Gd0.2O2-δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells
PublicationNdSrCo2O5+δ (NSCO) is a perovskite with an electrical conductivity of 1551.3 S cm−1 at 500 °C and 921.7 S cm−1 at 800 °C and has a metal-like temperature dependence. This perovskite is used as the cathode material for Ce0.8Gd0.2O2-δ (GDC)-supported microtubular solid oxide fuel cells (MT-SOFCs). The MT-SOFCs fabricated in this study consist of a bilayer anode, comprising a NiO–GDC composite layer and a NiO layer, and a NSCO–GDC...
-
Effects of Ni-NCAL and Ni–Ag electrodes on the cell performances of low-temperature solid oxide fuel cells with Sm0.2Ce0·8O2-δ electrolyte at various temperatures
PublicationThree low-temperature solid oxide fuel cells are built using Sm0.2Ce0·8O2-δ (SDC) as the electrolyte. Cell A is symmetrical and features Ni–LiNi0.8Co0·15Al0·05O2 (Ni–NCAL) electrodes, Cell B comprises a Ni–NCAL anode and a Ni–Ag cathode, and Cell C is fabricated using a Ni–NCAL cathode and a Ni–Ag anode. The ohmic resistance and polarization resistance (Rp) of Cells B and C are significantly higher than those of Cell A. The reduction...
-
High-temperature Co-electrolysis of CO2/H2O and direct methanation over Co-impregnated SOEC. Bimetallic synergy between Co and Ni
PublicationTo study the synergy between the transition metals for enhancing the electrochemical and chemical activity, a series of SOECs were modified with a small amount of Co ions, namely 1.8, 3.6, and 5.4 wt% in the reduced state. The addition of βCD into the precursor solution allowed for extremely fine dispersion of Co species across the Ni-YSZ cermet structure. The sample containing 3.6 wt% Co reached an outstanding over 2.5-times-higher...
-
Heterostructure based on exfoliated graphitic carbon nitride coated by porous carbon for photocatalytic H2 evolution
Publication -
Promotion of MXene (Ti3C2Tx) as a robust electrocatalyst for oxygen evolution reaction via active sites of ZIF-67 - In situ mechanism investigations
Publication -
Mesoporous carbon/graphitic carbon nitride spheres for photocatalytic H2 evolution under solar light irradiation
Publication -
In situ study of a composition of outlet gases from biogas fuelled Solid Oxide Fuel Cell performed by the Fourier Transform Infrared Spectroscopy
PublicationThe purpose of this study was to develop a method and software based on the Fourier Transform Infrared Spectroscopy for the in-situ, quantitative analysis of the composition of outlet gases from Solid Oxide Fuel Cell (SOFC). The calibration procedure performed at the beginning of the experiment indicated a polynomial dependence between the concentration of a calibrating gas (CO, CO2, CH4) and the corresponding integrated absorbance in...
-
Electrochemical properties of porous Sr0.86Ti0.65Fe0.35O3 oxygen electrodes in solid oxide cells: Impedance study of symmetrical electrodes
PublicationThis work evaluates porous Sr0.86Ti0.65Fe0.35O3 (STF35) as a possible oxygen electrode material for Solid Oxide Cells. The powder synthesis was performed by solid state method. Characterization included DC electrical conductivity study of sintered bulk samples and impedance spectroscopy study of symmetrical electrodes deposited on gadolinium doped ceria substrates. Measurements were carried out in atmospheres with different pO2...
-
Status report on high temperature fuel cells in Poland – Recent advances and achievements
PublicationThe paper presents recent advances in Poland in the field of high temperature fuel cells. The achievements in the materials development, manufacturing of advanced cells, new fabrication techniques, modified electrodes and electrolytes and applications are presented. The work of the Polish teams active in the field of solid oxide fuel cells (SOFC) and molten carbonate fuel cell (MCFC) is presented and discussed. The review is oriented...
-
Structural and electrical properties of Cr-doped SrTiO 3 porous materials
PublicationSeries of single-phase materials with assumed formula SrTi1−xCrxO3 (where x = 0, 1, 4, 6 mol.%) were obtained by sol-gel method. The structure and microstructure of materials were characterised by X-ray diffraction and scanning electron microscopy methods. Moreover, the study of electrical properties and evaluation of chemical stability in CO2/H2O atmosphere was performed by electrochemical impedance spectroscopy and thermogravimery...
-
Oxidation kinetics and electrical properties of oxide scales formed under exposure to air and Ar–H2-H2O atmospheres on the Crofer 22 H ferritic steel for high-temperature applications such as interconnects in solid oxide cell stacks
PublicationA 100 h isothermal oxidation kinetics study for Crofer 22H was conducted in air and the Ar–H2-H2O gas mixture (p(H2)/p(H2O) = 94/6) in the range of 973–1123 K. The parabolic rate constant was independent of oxygen partial pressure in the range from 6.2 × 10−24 to 0.21 atm at 1023 and 1073 K, while at 973 and 1123 K it was higher in air than in Ar–H2-H2O. The scales consisted of Cr2O3 and manganese chromium spinel with an Mn:Cr...
-
Dynamic impedance measurements of the Direct Methanol Fuel Cell cathode at various operating temperatures
PublicationThis article discusses the application of impedance analysis for diagnosing the cathode of a direct methanol fuel cell at various operating temperatures. The Dynamic Electrochemical Impedance Spectroscopy technique coupled with a linear current scan was applied for this purpose. This technique allowed the observation of changes in the cathode's properties in the fuel cell operating under real working conditions. An equivalent model...
-
Suspension and process parameters selection for electrophoretic deposition of Mn–Co spinel coating on steel interconnects
PublicationMetallic interconnect coatings, consisting of MnCo2O4 spinel, were effectively applied to Crofer 22 APU using the electrophoretic deposition (EPD) method in both H2O: ethanol and pure ethanol solvents. The primary goal of this method was to prevent chromium migration, minimize evaporation, and control the oxidation rate. The study aimed to assess the quality, adhesion, and thickness of the Mn–Co coating, with the objective of...
-
Preparation of MnCo2O4 and Mn1.7CuFe0.3O4 single-layer, and novel MnCo2O4/ Mn1.7CuFe0.3O4 dual-layer spinel protective coatings on complex-shaped metallic interconnects by EPD method
PublicationCeramic protective coatings applied to metallic interconnects play a vital role in solid oxide cells (SOCs) preventing interconnect degradation. In this study, uniform, dense, and crack-free single-layer coatings of MnCo2O4, Mn1.7CuFe0.3O4, and dual-layer coatings of MnCo2O4/ Mn1.7CuFe0.3O4 spinel are deposited onto complex-shaped metallic interconnect using electrophoretic deposition (EPD) method. The porosity of sintered MnCo2O4...
-
Nickel phase deposition on V2CTx/V2AlC as catalyst precursors for a dry methane reforming: The effect of the deposition method on the morphology and catalytic activity
PublicationDry reforming of methane (DRM) is a promising alternative technology for the production of syngas with simultaneous utilization of two main greenhouse gases (CH4, CO2). However, DRM technology is still an industrially immature process due to the lack of stable and active catalyst. Therefore, the search for new catalytic materials is of great research interest. Recently, MAX and MXenes materials are increasingly being tested as...
-
Tuning of eg electron occupancy of MnCo2O4 spinel for oxygen evolution reaction by partial substitution of Co by Fe at octahedral sites
PublicationTo study the effect of partial Co substitution by Fe in the B site of MnCo2O4 spinel on its physicochemical and electrochemical properties, a series of MnCo2-xFexO4 powders (x=0.125; 0.250; 0.500; 0.750; 1.000) were synthesized by means of the sol-gel method. The produced powders were characterized by powder X ray diffraction (pXRD), scanning and transmission electron microscopy (SEM & TEM) coupled with energy dispersive spectroscopy...
-
Impact of strontium non-stoichiometry of SrxTi0.3Fe0.7O3-δ on structural, electrical, and electrochemical properties for potential oxygen electrode of intermediate temperature solid oxide cells
PublicationThis work presents the results of a comprehensive study on the impact of the A-site non-stoichiometry of SrxTi0.3Fe0.7O3-δ (x = 0.90, 0.95, 1.00, 1.05) ceramics on their physicochemical properties. The materials were fabricated by the conventional solid-state reaction method and their structure was determined by X-ray diffractometry, X-ray photoelectron spectroscopy and electron microscopy. Their sintering and thermal expansion...
-
Fe-modified Mn2CuO4 spinel oxides: coatings based on abundant elements for solid oxide cell interconnects
PublicationThe current state of the art steel interconnect coating materials are based on critical raw material - Co-oxide spinels. Replacing Co-oxide spinels with alternative, abundant materials can reduce the dependence on the critical raw materials. Cobalt-free coatings with the general formula Mn2-xCuFexO4, where x = 0, 0.1, 0.3, were electrophoretically deposited on a ferritic stainless-steel support and evaluated. Prior to deposition,...
-
Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers
PublicationDepleting fossil fuel resources and anthropogenic climate changes are the reasons for the intensive development of new, sustainable technologies based on renewable energy sources. One of the most promising strategies is the utilization of hydrogen as an energy vector. However, the limiting issue for large-scale commercialization of hydrogen technologies is a safe, efficient, and economical method of gas storage. In industrial practice,...
-
The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream
PublicationEvaluation of performance of a proton exchange membrane fuel cell, which is affected by carbon monoxide that pollutes the hydrogen stream, was presented. This influence was studied for carbon monoxide concentration of 125–325 ppb, which are close to values specified in ISO 14687:2019 standard. Performed studies provided crucial information for further development of fuel cell as an energy source for automotive application. Impedance...
-
Hydrogen Storage in Geological Formations—The Potential of Salt Caverns
PublicationHydrogen-based technologies are among the most promising solutions to fulfill the ze- ro-emission scenario and ensure the energy independence of many countries. Hydrogen is considered a green energy carrier, which can be utilized in the energy, transport, and chemical sectors. However, efficient and safe large-scale hydrogen storage is still challenging. The most frequently used hydrogen storage solutions in industry, i.e., compression...
-
New technologies for green hydrogen activation, storage, and transportation
PublicationDeveloping new green hydrogen activation, storage, and transportation technologies is a highly complex and multidisciplinary endeavor. This challenge arises from integrating various scientific, engineering, and environmental considerations. Effective evaluation of green hydrogen technologies involves a holistic approach that considers not only the technical aspects but also economic, environmental, and social factors. These criteria...
-
Two-dimensional hydrogen-like atom in a weak magnetic field
PublicationWe consider a non-relativistic two-dimensional (2D) hydrogen-like atom in a weak, static, uniform magnetic field perpendicular to the atomic plane. Within the framework of the Rayleigh-Schr¨odinger perturbation theory, using the Sturmian expansion of the generalized radial Coulomb Green function, we derive explicit analytical expressions for corrections to an arbitrary planar hydrogenic bound-state energy level, up to the fourth...
-
Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation
PublicationDirect borohydride fuel cells (DBFCs) are devices which directly convert the chemical energy stored in the borohydride ion and oxidant into electrical energy as a result of redox reactions. Unfortunately, a significant amount of fuel is lost as a result of the undesirable hydrolysis reaction. The selection of an efficient borohydride hydrolysis inhibitor requires detailed knowledge regarding the interaction mechanism between the...