Search results for: hydroxyapatite
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublicationAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
Valorization of paper-mill sludge laden with 2-chlorotoluene using hydroxyapatite@biochar nanocomposite to enrich methanogenic community: A techno-economic approach
PublicationWhile several studies have investigated the anaerobic digestion of paper-mill sludge (PMS), this technology suffers from nutrient insufficiency, inhibition by aromatic compounds, and low bio-CH4 yield. Hence, PMS was anaerobically co-digested with chicken manure (CM) and supplemented by hydroxyapatite@biochar (HAP@BC) nanocomposite for enhancing 2-chlorotoluene degradation and enriching the methanogenic archaea. Multiple continuous...
-
Effect of carbonate substitution on physicochemical and biological properties of silver containing hydroxyapatites
Publication -
Maciej Jerzy Głowacki
PeopleMaciej Jerzy Głowacki is an alumnus of the Gdańsk University of Technology. He graduated with honors from the Faculty of Mechanical Engineering (B.Eng., 2017) and the Faculty of Electronics, Telecommunications and Informatics (M.S., 2018). Since 2014 he has been continuously actively involved in a research carried out at the Department of Metrology and Optoelectronics. His scientific activities include a deposition of antibacterial...
-
Effects of solution composition and electrophoretic deposition voltage on various properties of nanohydroxyapatite coatings on the Ti13Zr13Nb alloy
PublicationThe purpose of the research was to establish the influence of the solution composition and the electrophoretic deposition voltage on the coating homogeneity and thickness, nanohardness, adhesion, corrosion resistance and wettability. The Ti13Zr13Nb alloy was coated by the electrophoretic technique with hydroxyapatite in a solution containing 0.1, 0.2 or 0.5 g nanoHAp in 100 mL of suspension and at voltage 15, 30 or 50 V. The scanning...
-
The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process
PublicationThe presented research was intended to seek new optical methods to investigate the demineralization process of bones. Optical examination of the bone condition could facilitate clinical trials and improve the safety of patients. The authors used a set of complementary methods: polarization-sensitive optical coherence tomography (PS-OCT) and Raman spectroscopy. Chicken bone samples were used in this research. To stimulate in laboratory...
-
Nanocrystallization as a tool for controlling in vitro dissolution of borophosphate glass
PublicationThe controlled nanocrystallization of sodium-calcium-borophosphate glass (Na16.6Ca5.1B10.5Al0.8P10.5 O56.5 in at %) was conducted to investigate its influence on in vitro dissolution. Three temperatures (570 ◦C, 590 ◦C, and 610 ◦C) were selected based on thermal analysis and investigation of the morphology, structure, and in vitro dissolution of glass and glass-ceramics was conducted. The results of X-ray diffraction confirmed...
-
Effects of electrophoretic deposition times and nanotubular oxide surfaces on properties of the nanohydroxyapatite/nanocopper coating on the Ti13Zr13Nb alloy
PublicationLoad-bearing implants are developed with a particular emphasis placed on an application of ceramic hydroxyapatite coatings in order, to enhance the bioactivity of titanium implants and to shorten the healing time. Therefore, thin, fully crystalline coatings that are, highly adhesive, hydrophilic and demonstrating antibacterial properties are ly looked for. The aim of this research was to develop and characterize the properties...
-
Biocompatibility and Bioactivity of Load-Bearing Metallic Implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Biological and mechanical research of titanium implants covered with bactericidal coating
PublicationThe paper concerns the biological and mechanical properties of titanium implants with an antibacterial coating. The Ti13Zr13Nb alloy samples were coated with hydroxyapatite (HAp) coatings using the electrophoretic deposition technique (EPD). Subsequently, the surface of the samples was modified with silver, copper, and nickel nanoparticles by the immersion method. Different titanium sample types (i.e. HAp-only and nanometals-enriched...
-
Coatings in arthroplasty [online]
PublicationThe modern coatings used in arthroplasty for long term implants are reviewed. The phosphate coatingsare the most popular technique to improve the bone-implant interfacial strength and promote theosseointegration. The plasma spraying, electrophoretic precipitation, powder metallurgy, ion beamsputtering, high velocity oxy-fuel (HVOF) combustion spraying, sol-gel technique, biomimeticdeposition are mostly used to obtain the phosphate,...
-
The determinants of morphology and properties of the nanohydroxyapatite coating deposited on the Ti13Zr13Nb alloy by electrophoretic techniqe
PublicationThe titanium and its alloys belong at present to the most preferred and commonly applied biomaterials for load- bearing implants. The surfaces of biomaterials are subjected to modification, including the hydroxyapatite coatings deposited in order to ensure corrosion resistance and better joining between an implant and a bone through the possibility of ingrowth bone into the coating. In this paper, the morphology and properties...
-
Effect of crystallinity on structural, thermal, and in vitro dissolution properties of Na2O-CaO-Nb2O5/MgO-P2O5 glass-ceramics
PublicationThe impact of the crystallinity on structural, thermal, and in vitro dissolution properties were examined for Na2O- CaO-Nb2O5/MgO-P2O5 glasses/glass-ceramics. Glass-ceramics were synthesized via a spontaneous crystallization process. The Nb content in the materials increased with melting temperature, furthermore, the crystallinity is proportional to the Nb content. The presence of crystalline niobates and phosphates is confirmed...
-
Bioactive core material for porous load-bearing implants
PublicationSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
Modifications of silicate bioglass synthesis and composition for in vitro dissolution control: Static and dynamic assessment
PublicationA set of fifteen calcium-phosphate-silicate glass samples, varying in alkali, magnesium, silicon, and nitrogen content, was prepared, and their structural, thermal, and in vitro dissolution properties were analyzed. Infrared spectroscopy showed a high degree of depolymerization of the silicate network consisting mainly of Q2 and Q3 units. Thermal analysis showed that the silicon content primarily affects both the glass transition...
-
Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer
PublicationThe surface treatment of titanium implants has been applied mainly to increase surface bioactivity and, more recently, to introduce antibacterial properties. To this end, composite coatings have been investigated, particularly those based on hydroxyapatite. The present research was aimed at the development of another coating type, chitosan–nanosilver, deposited on a Ti13Zr13Nb alloy. The research comprised characterization of the...
-
Synthesis of 5-Substituted 1H-Tetrazoles from Nitriles in the Presence of Heterogeneous Catalyst
PublicationTetrazoles are five-membered heterocyclic compounds containing in their rings four nitrogen atoms. They have wide applications as corrosion inhibitors, analytical reagents, high-energy materials and gas generating compositions. Tetrazoles also play important role in coordination chemistry as ligands and in medicinal chemistry as metabolically stable surrogates for carboxylic acids. In recent years, investigation of new method of...
-
Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy
PublicationNowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of...
-
Effect of Nanohydroxyapatite on Silk Fibroin–Chitosan Interactions—Molecular Dynamics Study
PublicationFibroin–chitosan composites, especially those containing nanohydroxyapatite, show potential for bone tissue regeneration. The physicochemical properties of these biocomposites depend on the compatibility between their components. In this study, the intermolecular interactions of fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems were investigated: one containing acetic acid and the other...
-
Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy
PublicationTitanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings. The objective of the present research was to elaborate the technology of electrophoretic deposition...
-
Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core–shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solutions
PublicationBy combining different semiconductors, scientists have developed innovative materials capable of converting solar energy into useful forms of energy or driving chemical reactions that clean up pollutants. These materials offer a promising path to combat global environmental and energy challenges. In this study, HAp@Bi2S3 core–shell structures were synthesized using a facile microemulsion technique, and then loaded onto graphitic...
-
Corrosion Resistance and Surface Bioactivity of Ti6Al4V Alloy after Finish Turning under Ecological Cutting Conditions
PublicationThe influence of cooling conditions and surface topography after finish turning of Ti6Al4V titanium alloy on corrosion resistance and surface bioactivity was analyzed. The samples were machined under dry and minimum quantity lubrication (MQL) conditions to obtain different surface roughness. The surface topographies of the processed samples were assessed and measured using an optical profilometer. The produced samples were subjected...
-
Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering
PublicationThis paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially...
-
A comprehensive evaluation of flexible FDM/FFF 3D printing filament as a potential material in medical application
PublicationThe use of FDM/FFF in 3D printing for medical sciences is becoming common. This is due to the high availability and decent price of both 3D printers and filaments useful for FDM/FFF. Currently, researchers' attention is focused mainly on the study of medical filaments based on PLA, PCL or their modifications. This contributes to insufficient diversity of medical-grade filaments on the market. Moreover, due to the lack of specified...
-
Influence of synthesis conditions on glass formation, structure and thermal properties in the Na 2 O-CaO-P 2 O 5 system doped with Si 3 N 4 and Mg
PublicationOxynitride phosphate glasses and glass-ceramics were prepared using new synthesis routes for phosphate glasses. Materials were melted from pre-prepared glass samples in the system Na-Ca-P-O with addition of Mg and/or Si3N4 powders under different preparation conditions. The melting process was conducted at 1000–1500 °C either under air or nitrogen atmosphere to obtain materials with different nitrogen content. Their topography...
-
Spectroscopic studies of Nb-doped tricalcium phosphate glass-ceramics prepared by sol-gel method
PublicationCalcium-phosphate based glasses and glass-ceramics play a crucial role in the tissue engineering development. Apart from their high biocompatibility and excellent ability to undergo varying degrees of resorbability1, they exhibit relatively high bioactivity and due to that they are commonly used as bone and dental implants. A substantial research effort is devoted to improve calcium-phosphate materials physico-chemical properties...
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters
PublicationThe aim of the work is to compare the properties of nanohydroxyapatite coatings obtained using the electrophoretic deposition method (EDP) at 10 V, 20 V, and 30 V, and with deposit times of 2 and 5 min. The primary sedimentation was used to minimize the risk of the formation of particle agglomerates on the sample surface. Evaluation of the coating was performed by using a Scanning Electron Microscope (SEM), Energy-Dispersive Spectroscopy...
-
Powłoka hydroksyapatytowa na nanorurkowej warstwie tlenkowej na stopie tytanu
PublicationPrzedstawiono sposób nakładania powłok hydroksyapatytowych na porowaty stop tytanu Ti13Nb13Zr za pomocą osadzania biomimetycznego poprzez zanurzenie materiału w przesyconym symulowanym płynie fizjologicznym. Powłoka hydroksyapatytowa została osadzona na nanorurkową warstwę tlenkową, otrzymaną w wyniku utleniania elektrochemicznego w roztworze zawierającym jony fluorkowe.