Filters
total: 8126
-
Catalog
- Publications 6615 available results
- Journals 249 available results
- Conferences 107 available results
- People 343 available results
- Projects 20 available results
- Laboratories 3 available results
- e-Learning Courses 361 available results
- Events 11 available results
- Open Research Data 417 available results
displaying 1000 best results Help
Search results for: SURROGATE MODELING , ANTENNA DESIGN , DOMAIN CONFINEMENT , NESTED KRIGING , DEEP NEURAL NETWORKS
-
Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality
PublicationIn this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced func-tionality of the developed circuits is achieved by means...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublicationThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublicationAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...
-
Multi-Fidelity Local Surrogate Model for Computationally Efficient Microwave Component Design Optimization
PublicationIn order to minimize the number of evaluations of high-fidelity (“fine”) model in the optimization process, to increase the optimization speed, and to improve optimal solution accuracy, a robust and computational-efficient multi-fidelity local surrogate-model optimization method is proposed. Based on the principle of response surface approximation, the proposed method exploits the multi-fidelity coarse models and polynomial interpolation...
-
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
Evaluation of Facial Pulse Signals Using Deep Neural Net Models
PublicationThe reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency...
-
Reduced-cost surrogate modelling of compact microwave components by two-level kriging interpolation
PublicationFull-wave electromagnetic (EM) analysis is a versatile tool for evaluating the performance of high-frequency components. Its potential drawback is its high computational cost, inhibiting the execution of EM-driven tasks requiring massive simulations. The applicability of equivalent network models is limited owing to the topological complexity of compact microstrip components because of EM cross-coupling effects. Development of...
-
Simulation-Driven Antenna Modeling by Means of Response Features and Confined Domains of Reduced Dimensionality
PublicationIn recent years, the employment of full-wave electromagnetic (EM) simulation tools has become imperative in the antenna design mainly for reliability reasons. While the CPU cost of a single simulation is rarely an issue, the computational overhead associated with EM-driven tasks that require massive EM analyses may become a serious bottleneck. A widely used approach to lessen this cost is the employment of surrogate models, especially...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublicationUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Deep neural network architecture search using network morphism
PublicationThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
Low-Cost Yield-Driven Design of Antenna Structures Using Response-Variability Essential Directions and Parameter Space Reduction
PublicationQuantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g.,...
-
Modeling the Networks - ed. 2021/2022
e-Learning CoursesThe goal of this course is to present optimization problems for road networks, where the road network is a set of n distinct lines, or n distinct (open or closed) line segments, in the plane, such that their union is a connected region.
-
Simulation-driven design of compact ultra-wideband antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
NEURAL NETWORKS
Journals -
Deep Learning Basics 2023/24
e-Learning CoursesA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublicationIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublicationElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
Expedited Yield-Driven Design of High-Frequency Structures by Kriging Surrogates in Confined Domains
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of high-frequency structures systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the characteristics of antennas or microwave devices. For example, in the case...
-
Enhancing Performance of Switched Parasitic Antenna for Localization in Wireless Sensor Networks
PublicationThis paper presents an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna with enhanced performance of estimating the incoming signal direction. Designed antenna is dedicated for 2.4 GHz ISM applications with emphasis on Wireless Sensor Networks (WSN). The limitations of the existing design approach are illustrated, as well as perspectives and challenges of the proposed solution in relation to the localization in...
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
PublicationThis book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated...
-
Modeling in Machine Design
e-Learning CoursesThe course is meant to show the students how to build calculation models in machine design
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
A survey of neural networks usage for intrusion detection systems
PublicationIn recent years, advancements in the field of the artificial intelligence (AI) gained a huge momentum due to the worldwide appliance of this technology by the industry. One of the crucial areas of AI are neural networks (NN), which enable commer‐ cial utilization of functionalities previously not accessible by usage of computers. Intrusion detection system (IDS) presents one of the domains in which neural networks are widely tested...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublicationReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
Simulation-Driven Design of Microstrip Antenna Subarrays
PublicationA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (e.g., a corporate network) on the subarray side lobe level and allows adjusting both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces designs...
-
Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size deter-mination
PublicationIn this paper, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement...
-
Computer modeling and design of materials 2022/2023
e-Learning CoursesComputer modeling and design of materials, kierunek: Nanotechnologia, specjalność: Mathematics for new materials design, II stopień, semestr 3
-
Jerzy Konorski dr hab. inż.
PeopleJerzy Konorski received his M. Sc. degree in telecommunications from Gdansk University of Technology, Poland, and his Ph. D. degree in computer science from the Polish Academy of Sciences, Warsaw, Poland. In 2007, he defended his D. Sc. thesis at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology. He has authored over 150 papers, led scientific projects funded by the European Union,...
-
A structure and design of a novel compact UWB MIMO antenna
PublicationIn the paper, a concept and design procedure of a novel compact MIMO slot antenna is presented. In order to achieve a better filling of available space, individual antennas are constrained to a triangular shape and optimized for a reduced size. The MIMO structure is then assembled using the two of previously designed antennas in orthogonal arrangement. Surrogate-assisted numerical optimization involving variable-fidelity electromagnetic...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublicationIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
PublicationThe importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter...
-
A Concept and Design Optimization of Compact Planar UWB Monopole Antenna
PublicationA novel structure concept of a compact UWB monopole antenna is introduced together with a low-cost design optimization procedure. Reduced footprint is achieved by introduction of a protruded ground plane for current path increase and a matching transformer to ensure wideband impedance matching. All geometrical parameters of the structure are optimized simultaneously by means of surrogate based optimization involving variable-fidelity...
-
Robustness in Compressed Neural Networks for Object Detection
PublicationModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Accelerated design optimization of miniaturized microwave passives by design reusing and Kriging interpolation surrogates
PublicationElectromagnetic (EM) analysis has become ubiquitous in the design of microwave components and systems. One of the reasons is the increasing topological complexity of the circuits. Their reliable evaluation—at least at the design closure stage—can no longer be carried out using analytical or equivalent network representations. This is especially pertinent to miniaturized structures, where considerable EM cross-coupling effects occurring...
-
On Decomposition-Based Surrogate-Assisted Optimization of Leaky Wave Antenna Input Characteristics for Beam Scanning Applications
PublicationRecent years have witnessed a growing interest in reconfigurable antenna systems. Travelling wave antennas (TWAs) and leaky wave antennas (LWAs) are representative examples of structures featuring a great level of flexibility (e.g., straightforward implementation of beam scanning), relatively simple geometrical structure, low profile, and low fabrication cost. Notwithstanding, the design process of TWAs/LWAs is a challenging endeavor...
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublicationThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Categorization of emotions in dog behavior based on the deep neural network
PublicationThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
A structure and simulation-driven design of compact CPW-fed UWB antenna
PublicationIn this letter, a structure of a miniaturized ultra-wideband CPW-fed antenna and its design proce-dure are presented. The antenna is a modified version of the design previously proposed in the literature, with additional degrees of freedom introduced in order to improve the structure flexibility. The small size is achieved by executing a rigorous optimization procedure that consists of two stages: (i) smart random search carried...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublicationIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
Novel Structure and EM-Driven Design of Small UWB Monopole Antenna
PublicationA novel structure of a small UWB monopole antenna is presented. In our approach, a compact size is achieved by means of a meander line for current path enlargement as well as the two parameterized slits that introduce additional degrees of freedom helping to ensure good impedance matching. The antenna design is carried out using surrogate-based optimization involving variable-fidelity EM simulations. This allows us to simultaneously...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublicationNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...