Filters
total: 8968
-
Catalog
- Publications 7975 available results
- Journals 188 available results
- Conferences 102 available results
- Publishing Houses 1 available results
- People 123 available results
- Inventions 1 available results
- Projects 17 available results
- Research Equipment 8 available results
- e-Learning Courses 134 available results
- Events 4 available results
- Open Research Data 415 available results
displaying 1000 best results Help
Search results for: COMPUTATIONAL MODEL FOR SIMULATION
-
Rapid dimension scaling of compact microwave couplers with power split correction
PublicationIn this paper, a technique for rapid re-design ofcompact microwave couplers with respect to operating frequency is discussed. Our methodology involves an inverse surrogate model setup using several reference designs optimized (at the level of equivalent circuit representation of the coupler) for a set of operating frequencies within a range of interest. The surrogate establishes the relationship between the operating frequency...
-
Experimentally Aided Operational Virtual Prototyping to Predict Best Clamping Conditions for Face Milling of Large-Size Structures
PublicationVibrations occurring during milling operations are one of the main issues disturbing the pursuit of better efficiency of milling operations and product quality. Even in the case of a stable cutting process, vibration reduction is still an important goal. One of the possible solutions to obtain it is selection of the favorable conditions for clamping the workpiece to the machine table. In this paper, a method for predicting and...
-
Technical Engine for Democratization of Modeling, Simulations, and Predictions
PublicationComputational science and engineering play a critical role in advancing both research and daily-life challenges across almost every discipline. As a society, we apply search engines, social media, and se- lected aspects of engineering to improve personal and professional growth. Recently, leveraging such aspects as behavioral model analysis, simulation, big data extraction, and human computation is gain- ing momentum. The nexus...
-
Rapid Multi-band Patch Antenna Yield Estimation Using Polynomial Chaos-Kriging
PublicationYield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel...
-
ASYNCHRONICZNE METODY RADIOLOKALIZACYJNE
PublicationW pracy przedstawiono wybrane problemy lokalizowania obiektów w asynchronicznych sieciach radiowych. W pierwszej kolejności zostały zdefiniowane kryteria jakościowe do oceny efektywności pracy opracowanych metod oraz przedstawiono model symulacyjny, który został użyty do badań. W kolejnych trzech rozdziałach szczegółowo opisano trzy oryginalne asynchroniczne metody radiolokalizacyjne w różnych wariantach. Przeprowadzono analizę...
-
Performance and Power-Aware Modeling of MPI Applications for Cluster Computing
PublicationThe paper presents modeling of performance and power consumption when running parallel applications on modern cluster-based systems. The model includes basic so-called blocks representing either computations or communication. The latter includes both point-to-point and collective communication. Real measurements were performed using MPI applications and routines run on three different clusters with both Infiniband and Gigabit Ethernet...
-
Ireneusz Kreja dr hab. inż.
PeopleGraduated from the mathematical class at the Nicolaus Copernicus High School in Gdańsk (1974). Master of Sciences in Civil Engineering after studies at Gdansk University of Technology (GUT), Poland (1974-1979). Since 1979 became an employee of the GUT. In 1989 earned a Ph.D. degree in Civil Engineering (with grade "Summa cum Laude") from the GUT. In 2008 obtained a D. Sc. (Habilitation) degree in Civil Engineering (with grade...
-
Local mesh morphing technique for parametrized macromodels in the finite element method
PublicationThis paper presents a novel approach for enhancing the efficiency of the design process of microwave devices by means of the finite element method. It combines mesh morphing with local model order reduction (MOR) and yields parametrized macromodels that can be used to significantly reduce the number of variables in the FEM system of equations and acceleration of computer simulation. A projection basis for local reduction is generated...
-
A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PublicationIntegrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include:...
-
Research Platform for Monitoring, Control and Security of Critical Infrastructure Systems
PublicationSustainable operation of Critical Infrastructure Systems (CISs) is of a major concern to modern societies. Monitoring, control and security of such systems plays a key role in guaranteeing continuous, reliable and above all secure access to the resources provided by these systems. Development of adequate software and hardware structures, as well as algorithms to perform such functions cannot be done apart from the operational conditions...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Variable-fidelity response feature surrogates for accelerated statistical analysis and yield estimation of compact microwave components
PublicationAccounting for manufacturing tolerances is an essential part of a reliable microwave design process. Yet, quantification of geometry and/or material parameter uncertainties is challenging at the level of full-wave electromagnetic (EM) simulation models. This is due to inherently high cost of EM analysis and massive simulations necessary to conduct the statistical analysis. Here, a low-cost and accurate yield estimation procedure...
-
Image Segmentation of MRI image for Brain Tumor Detection
Publicationthis research work presents a new technique for brain tumor detection by the combination of Watershed algorithm with Fuzzy K-means and Fuzzy C-means (KIFCM) clustering. The MATLAB based proposed simulation model is used to improve the computational simplicity, noise sensitivities, and accuracy rate of segmentation, detection and extraction from MR...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublicationThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...
-
Knowledge-based performance-driven modeling of antenna structures
PublicationThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublicationIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
Multiscalar Control Based Airgap Flux Optimization of Induction Motor for Loss Minimization
PublicationBased on the induction motor model, considering the core loss resistance that accounts for magnetic characteristic saturation, a speed control approach is devised with an adaptive full-order (AFO) speed observer. The induction motor model analysis is done sincerely in a stationary reference frame. The control approach incorporates a flux reference generator designed to meet optimal operational circumstances and a nonlinear speed...
-
An Experimentally Aided Operational Virtual Prototyping to Obtain the Best Spindle Speed during Face Milling of Large-Size Structures
PublicationAbstract: The paper presents an original method concerning the problem of vibration reduction in the general case while milling large-size and geometrically complex details with the use of an innovative approach to the selection of spindle speed. A computational model is obtained by applying the so-called operational approach to identify the parameters of the workpiece modal model. Thanks to the experimental modal analysis results,...
-
How much a geometrical model of a honeycomb seal can be simpli ed in the CFD calculation
PublicationThis paper presents the inuence of geometry simplication on the results obtained in the computational fluid dynamics simulation. The subject of simulation was part of the honeycomb seal located at the inlet to high pressure part of a steam turbine. There were three different geometrical models assumed in the calculations. First one was two-dimensional case and two others were three dimensional, one with the radius of curvature...
-
Local Nusselt number evaluation in the case of jet impingement
PublicationJet impingement still is one of demanding cases regarding computational fluid dynamics, due to its highly turbulent behaviour, with occurrence of turbulent-laminar transition. Even recently developed methods exhibit some drawbacks – RANS based simulations lack accuracy, LES and DNS based ones require too much computational time. Hybrid methods also exist, but their development and validation is in progress. Nevertheless, CFD application...
-
Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna
PublicationIn this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface...
-
Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise
PublicationThis paper discusses the design and application of iterative learning control (ILC) and repetitive control (RC) for high modal density systems. Typical examples of these systems are structural and acoustical systems considered in active structural acoustic control (ASAC) and active noise control (ANC) applications. The application of traditional ILC and RC design techniques, which are based on a parametric system model, on systems...
-
Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach
PublicationThe paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow...
-
Optimization of the spindle speed during milling of large-sized structures with the use of technique of Experiment-Aided Virtual Prototyping
PublicationIn the paper are presented considerations concerning vibration suppression problems during milling of large-sized workpieces with the use of innovative method of matching the spindle speed of cutting tool. It depends on repeatable change of the spindle speed value as soon as the optimal vibration state of the workpiece approaches. The values of dominant “peaks” in the frequency spectra and the Root Mean Square (RMS) values of time...
-
Reduced-cost constrained miniaturization of wideband antennas using improved trust-region gradient search with repair step
PublicationIn the letter, an improved algorithm for electromagnetic (EM)-driven size reduction of wideband antennas is proposed. Our methodology utilizes variable-fidelity EM simulation models, auxiliary polynomial regression surrogates, as well as multi-point response correction. The constraint handling is implicit, using penalty functions. The core optimization algorithm is a trust-region gradient search with a repair step added in order...
-
Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size deter-mination
PublicationIn this paper, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublicationContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublicationThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Knowledge-Based Expedited Parameter Tuning of Microwave Passives by Means of Design Requirement Management and Variable-Resolution EM Simulations
PublicationThe importance of numerical optimization techniques has been continually growing in the design of microwave components over the recent years. Although reasonable initial designs can be obtained using circuit theory tools, precise parameter tuning is still necessary to account for effects such as electromagnetic (EM) cross coupling or radiation losses. EM-driven design closure is most often realized using gradient-based procedures,...
-
Accelerated simulation-driven design optimisation of compact couplers by means of two-level space mapping
PublicationIn this study, the authors discuss a robust and efficient technique for rapid design of compact couplers. The approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the coupler structure under design. The first SM layer (local correction) is utilised to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. Subsequent global correction allows...
-
Expedited constrained multi-objective aerodynamic shape optimization by means of physics-based surrogates
PublicationIn the paper, computationally efficient constrained multi-objective design optimization of transonic airfoil profiles is considered. Our methodology focuses on fixed-lift design aimed at finding the best possible trade-offs between the two objectives: minimization of the drag coefficient and maximization of the pitching moment. The algorithm presented here exploits the surrogate-based optimization principle, variable-fidelity computational...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
RANS-based design optimization of dual-rotor wind turbines
PublicationPurpose An improvement in the energy efficiency of wind turbines can be achieved using dual rotors. Because of complex flow physics, the design of dual-rotor wind turbines (DRWTs) requires repetitive evaluations of computationally expensive partial differential equation (PDE) simulation models. Approaches for solving design optimization of DRWTs constrained by PDE simulations are investigated. The purpose of this study is to determine...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublicationDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
Hybrid DUMBRA: an efficient QoS routing algorithm for networks with DiffServ architecture
PublicationDynamic routing is very important issue of current packet networks. It may support the QoS and help utilize available network resources. Unfortunately current routing mechanisms are not sufficient to fully support QoS. Although many research has been done in this area no generic QoS routing algorithm has been proposed that could be used across all network structures. Existing QoS routing algorithms are either dedicated to limited...
-
Numerical Analysis of Turbulent Flow over a Backward-facing Step in an Open Channel
PublicationComputational examinations of the flow field in an open channel having a single Backward--Facing Step (BFS) with a constant water depth of 1.5 m were performed. The effects of the expansion ratio, and the flow velocity along the reattachment length, were investigated by employing two different expansion ratios of 1.5 and 2, and eight various flow velocities of 0.5, 1, 2, 3, 4, 5, 7.5 and 10 m/sec in the Computational Fluid Dynamic...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublicationModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels
PublicationPractical microwave design is most often carried out in the nominal sense. Yet, in some cases, performance degradation due to uncertainties may lead to the system failing to meet the prescribed specifications. Reliable uncertainty quantification (UQ) is therefore important yet intricate from numerical standpoint, especially when the circuit at hand is to be evaluated using electromagnetic (EM) simulation tools. Tolerance-aware...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublicationIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
Effects of Noncontact Shoulder Tool Velocities on Friction Stir Joining of Polyamide 6 (PA6)
PublicationIn this study, the effects of the traverse and rotational velocities of the noncontact shoulder tool on the heat generation and heated flux during the friction stir joining of high-density polyamide 6 (PA6) polymer were investigated. The computational fluid dynamics (CFD) method was employed to simulate the thermomechanical phenomena during the friction stir joining (FSJ) process of PA6. A developed model was used to consider the...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
Krzysztof Jan Kaliński prof. dr hab. inż.
PeopleKrzysztof J. Kaliński completed his MSc study at Gdańsk University of Technology (GUT) Faculty of Production Engineering (1980, result – get a first). He obtained PhD at GUT Faculty of Machine Building (1988, result – get a first), DSc at GUT Faculty of Mechanical Engineering (ME) (2002, result – get a first), and professor’s title – w 2013 r. In 2015 r. he became full professor, and since 2019 - professor.His research area includes:...
-
Rapid Design Centering of Multi-Band Antennas Using Knowledge-Based Inverse Models and Response Features
PublicationAccounting for manufacturing tolerances as well as uncertainties concerning operating conditions and material parameters is one of the important yet often neglected aspects of antenna development. Appropriate quantification of uncertainties allows for estimating the fabrication yield but also to carry out robust design (e.g., yield maximization). For reliability reasons, statistical analysis should be executed at the accuracy level...
-
Mitigation effect of face shield to reduce SARS-CoV-2 airborne transmission risk: Preliminary simulations based on computed tomography
PublicationWe aimed to develop a model to quantitatively assess the potential effectiveness of face shield (visor) in reducing airborne transmission risk of the novel coronavirus SARS-CoV-2 during the current COVID-19 pandemic using the computational fluid dynamics (CFD) method. The studies with and without face shield in both an infected and healthy person have been considered in indoor environment simulation. In addition to the influence...
-
Mitigation effect of face shield to reduce SARS-CoV-2 airborne transmission risk: Preliminary simulations based on computed tomography
PublicationWe aimed to develop a model to quantitatively assess the potential effectiveness of face shield (visor) in reducing airborne transmission risk of the novel coronavirus SARS-CoV-2 during the current COVID-19 pandemic using the computational fluid dynamics (CFD) method. The studies with and without face shield in both an infected and healthy person have been considered in indoor environment simulation. In addition to the influence...
-
Deformable model of a butterfly in motion on the example of Attacus atlas
PublicationInsect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. High-speed videogrammetry was used to capture the wing kinematics and deformations. The movements of...
-
Rapid design of miniaturised branch-line couplers through concurrent cell optimisation and surrogate-assisted fine-tuning
PublicationIn this study, the authors introduce a methodology for low-cost simulation-driven design optimisation of highly miniaturised branch-line couplers (BLCs). The first stage of their design approach exploits fast concurrent optimisation of geometrically dependent, but electromagnetically isolated cells that constitute a BLC. The cross-coupling effects between the cells are taken into account in the second stage, where a surrogate-assisted...
-
The efficiency of turbomachinery in the zero-and three-dimensional approaches
PublicationEfficiency of turbomachinery is usually defined using an isentropic process. This approach provides a reliable reference point only when pressure and temperature measurements are available, e.g. at the casing inlet and outlet. In the case of a single stage internal efficiency determination the reference point is difficult. Computational fluid dynamics allows for an exact calculation of values of losses occurring in a turbine...