displaying 1000 best results Help
Search results for: cross-sensitivity, multiple linear regression, artificial neural networks
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublicationForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
NON-LINEAR MASTIC CHARACTERISTICS BASED ON THE MODIFIED MSCR (MULTIPLE STRESS CREEP RECOVERY) TEST
PublicationMastic containing asphalt in its composition is an example of a viscoelastic material. It is an effective binder in asphalt. It consists of a filler (<0.063 mm) and asphalt mixed in the right proportions. Just like in asphalt, its response depends on the temperature level, the load and stress time. Changing the stress stiffness of the mastic affects the non-linear course of the stress-strain relationship. Modelling of the non-linear...
-
Efficiency of service recovery in scale-free optical networks under multiple node failures
PublicationIn this paper we examine the properties of scale-free networks in case of simultaneous failures of two networknodes. Survivability assumptions are as follows: end-to-end path protection with two node-disjoint backup pathsfor each working path. We investigate three models of scale-free networks generation: IG, PFP and BA.Simulations were to measure the lengths of active and backup paths and the values of service recovery time.We...
-
Towards bees detection on images: study of different color models for neural networks
PublicationThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks
Publication -
Aerodynamic excitations generated in turbine shroud clearance determined bymeans of neural networks
PublicationSiły aerodynamiczne generowane w uszczelnieniach turbinowych z reguły opisywane są modelem liniowym. Przy dużych drganiach wirnika sposób ten daje niezbyt dokładne wyniki. Zaproponowano wykorzystanie sieci neuronowych do określania sił ciśnieniowych powstających w uszczelnieniu. Wyniki porównano z badaniami eksperymentalnymi.
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublicationThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Router Selfishness in Community Wireless Mesh Networks: Cross-Layer Benefits and Harms
PublicationWęzły sieci mesh nie są poddane administracyjnej kontroli, zarazem nie odczuwają ograniczeń energetycznych. Są przez to skłonne do zachowań egoistycznych w warstwach 2 i 3 OSI, w szczególności w odniesieniu do protokołów MAC i routingowych. W pracy przebadano symulacyjnie wybrane aspekty środowiska mesh uzasadniające podjęcie ataków egoistycznych i zidentyfikowano trzy: gęstość rozmieszczenia i położenie routerów oraz warstwa OSI...
-
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publication -
Modelling changes in the energy efficiency of buildings using neural networks on the example of Zielona Góra
Publication -
Prediction of Early Childhood Caries Based on Single Nucleotide Polymorphisms Using Neural Networks
Publication -
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publication -
Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks
PublicationThe effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network
Publication -
SZACOWANIE ZAWARTOŚCI BENZO(a)PIRENU W PYLE ZAWIESZONYM PM10 W AGLOMERACJI TRÓJMIEJSKIEJ ZA POMOCĄ WIELOWYMIAROWEJ REGRESJI LINIOWEJ=ESTIMATION OF BENZO(A)PYRENE CONTENT IN SUSPENDED DUST PM10 IN TRI-CITY AGGLOMERATION USING MULTIDIMENSIONAL LINEAR REGRESSION
PublicationW pracy przedstawiono próbę oszacowania przy pomocy wielowymiarowej regresji liniowej modelu empirycznego opisującego czynniki wpływające na zawartość B(a)P w pyle zawieszonym PM10 w Aglomeracji Trójmiejskiej w latach 2008-2011. Na przestrzeni tych lat średnioroczne stężenie B(a)P w PM10 wzrosło ponad dwukrotnie i ponad trzykrotnie przewyższa poziom docelowy. Z przeprowadzonych analiz wynika, że główną przyczyną wzrostu stężenia...
-
Piotr Szczuko dr hab. inż.
PeoplePiotr Szczuko received his M.Sc. degree in 2002. His thesis was dedicated to examination of correlation phenomena between perception of sound and vision for surround sound and digital image. He finished Ph.D. studies in 2007 and one year later completed a dissertation "Application of Fuzzy Rules in Computer Character Animation" that received award of Prime Minister of Poland. His interests include: processing of audio and video, computer...
-
Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings
Publication -
Long Short-Term Memory (LSTM) neural networks in predicting fair price level in the road construction industry
Publication -
Application of neural networks for identification of forcedness having effect on magnitude of turbine rotor vibration using rotor trajectory.
PublicationW pracy dokonano analizy zastosowania sieci neuronowych do wyznaczenia wartości wymuszeń wpływających na wielkość drgań wirnika używając trajektorii jako parametr określający drgania. Badania przeprowadzono na powietrznej, jednostopniowej turbinie modelowej. Przemieszczenia poziome i pionowe wirnika turbiny mierzono przy pomocy systemu pomiarowego i rejestrowano na oscyloskopie cyfrowym. Przeprowadzono pomiary trajektorii ruchu...
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublicationAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Andrzej Stateczny prof. dr hab. inż.
PeopleProf. Dr. Andrzej Stateczny is a Professor of Gdansk Technical University Poland and President of Marine Technology Ltd. His research interests are mainly centered on navigation, hydrography and geoinformatics. Current RF research activities include radar navigation, comparative navigation, hydrography, artificial intelligence methods focused on image processing and multisensory data fusion. He has been the Principal Investigator...
-
Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples
Publication -
Paweł Możejko dr hab.
People -
Wiktoria Wojnicz dr hab. inż.
PeopleDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) List of papers (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis of...
-
Particle swarm optimization–artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid–liquid microextraction
Publication -
Deep Learning Basics 2023/24
e-Learning CoursesA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra
Publication -
Application of neural networks for identification of forcedness having effect on magnitude of turbine rotor vibration using pressure distribution in blade tip clearance.
PublicationW pracy sprawdzono, czy zastosowanie sieci neuronowych umożliwia identyfikację wymuszeń powstających w wyniku funkcjonowania maszyny jak i zależnych od jej stanu mechanicznego przy zastosowaniu rozkładu ciśnienia w uszczelnieniu nadbandażowym. Przeprowadzono pomiary rozkładu ciśnienia dla różnych warunków pracy, uwzględniając zmianę mimośrodu oraz zmianę skośnego ustawienia osi wirnika względem osi korpusu. Dokonano analiz przy...
-
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublicationThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Artificial Neural Networks in Engineering Conference
Conferences -
European Symposium on Artificial Neural Networks
Conferences -
International Conference on Artificial Neural Networks
Conferences -
Modelowanie przepływu pary przez okołodźwiękowe wieńce turbinowe z użyciem sztucznych sieci neuronoych
PublicationNiniejszy artykuł stanowi opis modelu przepływu pary przez okołodźwiękowe stopnie turbinowe, stworzonego w oparciu o sztuczne sieci neuronowe (SSN). Przedstawiony model neuronowy pozwala na wyznaczenie rozkładu wybranych parametrów w analizowanym przekroju kanału przepływowego turbiny dla rozpatrywanego zakresu wartości ciśnienia wlotowego.
-
Activation maps of convolutional neural networks as a tool for brain degeneration tracking in early diagnosis of dementia in Parkinson's disease based on magnetic resonance imaging
Publication -
Productivity Enhancement by Prediction of Liquid Steel Breakout during Continuous Casting Process in Manufacturing of Steel Slabs in Steel Plant Using Artificial Neural Network with Backpropagation Algorithms
Publication -
Conference on Artificial Neural Networks and Expert systems
Conferences -
International Conference on Artificial Neural Networks and Genetic Algorithms
Conferences -
International Work-Conference on Artificial and Natural Neural Networks
Conferences -
Synteza układu sterowania statkiem morskim dynamicznie pozycjonowanym w warunkach niepewności
PublicationNiniejsza monografia obejmuje zagadnienia związane z syntezą układu dynamicznego pozycjonowania statku w środowisku morskim z zastosowaniem wybranych nieliniowych metod sterowania. W ramach pracy autorka rozważała struktury sterowania z zastosowaniem wektorowej adaptacyjnej metody backstep oraz metod jej pokrewnych, takich jak regulatory MSS (ang. multiple surface sliding), DSC (ang. dynamic surface control), NB (ang. neural backstepping)....
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine in unsteady states
PublicationContemporary engine tests are performed based on the theory of experiment. The available versions of programmes used for analysing experimental data make frequent use of the multiple regression model, which enables examining effects and interactions between input model parameters and a single output variable. The use of multi-equation models provides more freedom in analysing the measured results, as those models enable simultaneous...
-
Computational intelligence methods in production management
PublicationThis chapter presents a survey of selected computational intelligence methods used in production management. This group of methods includes, among others, approaches based on the artificial neural networks, the evolutionary algorithms, the fuzzy logic systems and the particle swarm optimization mechanisms. From the abovementioned methods particularly noteworthy are the evolutionary and the particle swarm algorithms, which are successfully...
-
Robert Burczyk mgr inż.
PeopleRobert Burczyk received Eng. degree and M. SC. Eng. degree in electronics and telecommunictions engineering in 2017 and 2018 successively with specialization in radiocommunication systems and networks. The subject of the dissertations was focused on Wireless Body Area Network (WBAN). Currently, he is a PhD student and an employee at the Department of Radiocommunication Systems and Networks, Gdansk University of Technology. His...
-
Neural network simulator's application to reference performance determination of turbine blading in the heat-flow diagnostics.
PublicationIn the paper, the possibility of application of artificial neural networks to perform the fluid flow calculations through both damaged and undamaged turbine blading was investigated. Preliminary results are presented and show the potentiality of further development of the method for the purpose of heat-flow diagnostics.
-
Optymalizacja treningu i wnioskowania sieci neuronowych
PublicationSieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Australian Conference on Neural Networks
Conferences -
International Symposium on Neural Networks
Conferences -
World Congress on Neural Networks
Conferences