Search results for: machine learning, music analysis, tonality
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublicationThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Computational Analysis of Transformational Organisational Change with Focus on Organisational Culture and Organisational Learning: An Adaptive Dynamical Systems Modeling Approach
PublicationTransformative Organisational Change becomes more and more significant both practically and academically, especially in the context of organisational culture and learning. However computational modeling and formalization of organisational change and learning processes are still largely unexplored. This chapter aims to provide an adaptive network model of transformative organisational change and translate a selection of organisational...
-
Credit Decision Support Based on Real Set of Cash Loans Using Integrated Machine Learning Algorithms
Publication -
Detection of Cystic Fibrosis Symptoms Based on X-Ray Images Using Machine Learning- Pilot Study
Publication -
Efficient Calibration of Cost-Efficient Particulate Matter Sensors Using Machine Learning and Time-Series Alignment
PublicationAtmospheric particulate matter (PM) poses a significant threat to human health, infiltrating the lungs and brain and leading to severe issues such as heart and lung diseases, cancer, and premature death. The main sources of PM pollution are vehicular and industrial emissions, construction and agricultural activities, and natural phenomena such as wildfires. Research underscores the absence of a safe threshold for particulate exposure,...
-
Universal Predictors of Dental Students’ Attitudes towards COVID-19 Vaccination: Machine Learning-Based Approach
Publication -
Quantitative Soil Characterization for Biochar–Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization
Publication -
Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods
PublicationOne of the important factors determining the biochemical processes in bioreactors is the quality of the wastewater inflow to the wastewater treatment plant (WWTP). Information on the quality of wastewater, sufficiently in advance, makes it possible to properly select bioreactor settings to obtain optimal process conditions. This paper presents the use of classification models to predict the variability of wastewater quality at...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublicationIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...
-
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
PublicationComputational cost is an important consideration for memory encoding prediction models that use data from dozens of implanted electrodes. We propose a method to reduce computational expense by selecting a subset of all the electrodes to build the prediction model. The electrodes were selected based on their likelihood of measuring brain activity useful for predicting memory encoding better than chance (in terms of AUC). A logistic...
-
Presentation of Novel Architecture for Diagnosis and Identifying Breast Cancer Location Based on Ultrasound Images Using Machine Learning
Publication -
Analysis of Learning Outcomes in Medical Education with the Use of Fuzzy Logic
PublicationThe national curricula of the EU member states are structured around learning outcomes, selected according to Bloom’s Taxonomy. The authors of this paper claim that using Bloom’s Taxonomy to phrase learning outcomes in medical education in terms of students’ achievements is difficult and unclear. This paper presents an efficient method of assessing course learning outcomes using Fuzzy Logic.
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublicationThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Automated Text Annotation Using Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection
Publication -
Automated Text Annotation Using a Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection
Publication -
Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage
Publication -
Analysis of network infrastructure and QoS requirements for modern remote learning systems.
PublicationW referacie przedstawiono różne modele zdalnego nauczania. Podjęto próbę oceny wymagań nakładanych na infrastrukturę sieci. Ponadto przedstawiono mechanizmy QoS spotykane w sieciach teleinformatycznych oraz dokonano oceny możliwości ich współpracy w systemach edukacji zdalnej
-
Application of creative problem-solving methods in remote learning. Bibliometric analysis
Publication -
Distance learning trends: introducing new solutions to data analysis courses
PublicationNowadays data analysis of any kind becomes a piece of art. The same happens with the teaching processes of statistics, econometrics and other related courses. This is not only because we are facing (and are forced to) teach online or in a hybrid mode. Students expect to see not only the theoretical part of the study and solve some practical examples together with the instructor. They are waiting to see a variety of tools, tutorials,...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publicationconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Determinants of anxiety levels among young males in a threat of experiencing military conflict–Applying a machine-learning algorithm in a psychosociological study
Publication -
Development and Optimization of Deep Learning Systems for MRI Analysis in Alzheimer's Disease Monitoring
Publication -
Michał Grochowski dr hab. inż.
PeopleProfessor and a Head of the Department of Intelligent Control and Decision Support Systems at Gdansk University of Technology (GUT). He is also a Member of the Board of the Digital Technologies Center of GUT. He received his M.Sc. degree in Control Engineering in 2000 from the Electrical and Control Engineering Faculty at the GUT. In 2004 he received a Ph.D. degree in Automatic Control and Robotics from this...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Analysis of surface roughness of chemically impregnated Scots pine processed using frame-sawing machine
PublicationThe objective of this work was to evaluate the effect of the impregnation process of pine wood (Pinus sylvestris L.) on roughness parameters of the surface processed on a frame sawing. The samples weredried and impregnated using a commercial procedure by a local company. The touch method withthe use of measuring stylus (pin) was employed to determine of surface roughness of the samplesconsidering parameters, namely, arithmetical...
-
Development and Validation of a Deep Learning Model for Histopathological Slide Analysis in Lung Cancer Diagnosis
Publication -
COMPARATIVE ANALYSIS OF COPING STRATEGIES WITH STRESS OF STUDENTS IN DIFFERENT LEARNING CONDITIONS DURING THE PANDEMIC
Publication -
Assessing climate change threats and urbanization impacts on surface runoff in Gdańsk (Poland): insights from remote sensing, machine learning and hydrological modeling
PublicationThis study investigates the impacts of Land Use/Land Cover (LULC) changes and climate change on surface runoff in Gdańsk, Poland, which is crucial for local LULC planning and urban flood risk management. The analysis employs two primary methodologies: remote sensing and hydrological modeling. Remote sensing was conducted using Google Earth Engine and Land Change Modeler in IDRISI Terrset software to analyze historical (1985–2022)...
-
Diversity of Students’ Unethical Behaviors in Online Learning Amid COVID-19 Pandemic: An Exploratory Analysis
Publication -
JOURNAL OF MACHINE LEARNING RESEARCH
Journals -
Machine Learning and Knowledge Extraction
Journals -
Sawdust size distribution analysis of thermally modified and unmodified oak wood sawed on the frame sawing machine PRW15-M
PublicationW pracy przedstawiono wyniki analizy granulometrycznej składu wiórów drewna dębowego niemodyfikowanego i modyfikowanego termicznie uzyskanych podczas piłowania na pilarce ramowej PRW15-M z prędkością posuwu 1.67 mmin-1. Otrzymane trociny termicznie modyfikowanego drewna dębowego składają się z wiórów o ziarnistości w przedziale od 44.7 mm do 4.6 mm, podczas gdy dla drewna niemodyfikowanego zaobserwowano zmiany ziarnistości w granicach...
-
Failure analysis of a high-speed induction machine driven by a SiC-inverter and operating on a common shaft with a high-speed generator
PublicationDue to ongoing research work, a prototype test rig for testing high-speed motors/generators has been developed. Its design is quite unique as the two high- speed machines share a single shaft with no support bearings between them. A very high maximum operating speed, up to 80,000 rpm, was required. Because of the need to minimise vibration during operation at very high rotational speeds, rolling bearings were used. To eliminate...
-
Asian Conference on Machine Learning
Conferences -
International Conference on Machine Learning
Conferences -
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublicationSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Open Research DataSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
International Conference on Machine Learning and Cybernetics
Conferences -
International Conference on Machine Learning and Applications
Conferences -
Farzin Kazemi
PeopleHis main research areas are seismic performance assessment of structures and seismic hazard analysis in earthquake engineering. He performed a comprehensive study on the effect of pounding phenomenon and proposed modification factors to modify the seismic collapse capacity of structures or predict the seismic collapse capacity of structures which were retrofitted with linear and nonlinear Fluid Viscous Dampers (FVDs). His current...
-
RS-REMD Protein-GAG Interaction Dataset in CHARMM36m
Open Research DataThe dataset includes input files, simulation parameters, and analysis scripts used in Repulsive Scaling Replica Exchange Molecular Dynamics (RS-REMD) simulations to study protein–glycosaminoglycan (GAG) interactions. In this study, the RS-REMD method was applied for molecular docking of GAGs and carbohydrates to selected protein targets. Molecular Mechanics...
-
Podstawy uczenia maszynowego AI
e-Learning CoursesPodstawy uczenia maszynowego. Machine Learning fundamentals.
-
SYNAT_PCA_48
Open Research DataThere is a series of datasets containing feature vectors derived from music tracks. The dataset contains 51582 music tracks (22 music genres) and feature vector after Principal Component Analysis (PCA) performing, so there are 48-element vectors derived from music excerpts. Originally, a feature vector containing 173 elements was conceived in earlier...
-
SYNAT_PCA_11
Open Research DataThe dataset contains 51582 music tracks (22 music genres) and feature vector after Principal Component Analysis (PCA) performing, so there are 11-element vectors derived from music excerpts. Originally, a feature vector containing 173 elements was conceived in earlier research studies carried out by the team of authors [1-6]. A collection of more than...
-
Julita Wasilczuk dr hab.
PeopleBorn on 5th of April, 1965 in Gdansk. In 1987-1991 studied the economics of transport, at the University of Gdansk. At 1993 she started to work at the Faculty of Management and Economics. In 1997 received a PhD at the faculty, in 2006 habilitation at the Faculty of Management, University of Gdansk. Since 2009 Associate Professor at Gdansk University of Technology. In 2010-2012 Associate Professor of Humanistic High School at Gdansk. The...
-
Granulometric analysis of dry sawdust from the sawing process on the frame sawing machine PRW15M = Granulometrická analýza suchej piliny z procesu pílenia borovicového dreva na rámovej píle PRW-15M
PublicationW artykule przedstawiono wyniki analizy granulometrycznej trocin otrzymanych podczas procesu przecinania drewna sosnowego na pilarce ramowej PRW15M. Wielkość otrzymanych trocin miesciła się w zakresie od 84,7 µm do 15,2 mm. Z punktu widzenia kształtu trociny średniej wielkości d>125µm są swym kształtem zbliżone do włókien drzewnych. Z kolei, drobne frakcje d<125µm mają kształt sześcienny. Ponadto, wzrost prędkości posuwu powoduje...
-
SYNAT Music Genre Parameters PCA 19
Open Research DataThe dataset contains feature vector after Principal Component Analysis (PCA) performing, so there are 11 music genres and 19-element vector derived from music excerpts. Originally, a feature vector containing 173 elements was conceived in earlier research studies carried out by the team of authors [1-6]. A collection of 52532 music excerpts described...
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublicationIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...