Search results for: diamond electrode
-
Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls
PublicationTwo different type of electrodes, boron-doped diamond electrode (BDD) and boron-doped carbon nanowalls (B:CNW) electrode, were used for the electrochemical determination of paracetamol using the cyclic voltammetry and the differential pulse voltammetry in phosphate buffered saline, pH = 7.0. The main advantage of these electrodes is their utilization without any additional modification of the electrode surface. The peak current...
-
Electrochemical oxidation of ionic liquids at highly boron doped diamond electrodes
Publication -
Electrochemical oxidation of ionic liquids at highly boron doped diamond electrodes
PublicationUtlenianie elektrochemiczne przy zastosowaniu elektrod diamentowych wysoko domieszkowanych borem (BDD) było badane pod względem przydatności do utylizacji roztworów zawierających ciecze jonowe (ILs). Dwustronne elektrody Si/BDD przygotowano metodą chemicznego osadzania z fazy lotnej wspomaganego plazmą (MW PE CVD). Badanie przy użyciu skaningowej mikroskopii elektronowej (SEM) potwierdziło, że wytworzone warstwy były ciągłe i miały...
-
Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration
PublicationThe boron-doped diamond (BDD) electrodes with different boron concentrations have been tested as electrode material for sulphamerazine (SRM) oxidation in water solution. An investigation of the electrode morphology and molecular structure was carried out using high resolution scanning electron microscopy (SEM) and Raman spectroscopy. Electrochemical results showed clearly that the kinetics and efficiency of SRM oxidation were dependent...
-
Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration
Publication -
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
In-situ monitoring of electropolymerization processes at boron-doped diamond electrodes by Mach-Zehnder interferometer
PublicationIn this work, the Mach-Zehnder interferometer was designed to monitor the electrochemical processes conducted at boron-doped diamond electrode surface. The diamond electrodes were synthesized via Microwave Plasma-Assisted Chemical Vapor Deposition on optical grade quartz glass. The achieved transmittance in working are of diamond electrodes reached 55 %. A cage system-based Mach-Zehnder interferometer was used which allowed the...
-
The electrochemical determination of isatin at nanocrystalline boron-doped diamond electrodes: stress monitoring of animals
PublicationUltra-thin nanocrystalline boron-doped diamond electrodes (B:NCD) were used for the electrochemical determination of isatin in dog urine samples using cyclic voltammetry and square wave voltammetry in a phosphate buffer saline, pH = 7.2. No additional modification or pretreatment of the electrode surface was required in this approach, being of high importance for the facile detection procedure. The increase of the peak current...
-
Fabrication and characterization of composite TiO2 nanotubes/ boron-doped diamond electrodes towards enhanced supercapacitors
PublicationThe composite TiO2 nanotubes / boron-doped diamond electrodes were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition resulting in the improved electrochemical performance. This composite electrode can deliver high specific capacitance of 7.46 mF cm‐− 2 comparing to boron-doped diamond (BDD) deposited onto flat Ti plate (0.11 mF cm‐− 2).The morphology and composition of composite electrode were characterized...
-
High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification
PublicationIn this work, we reveal in detail the effects of high-temperature treatment in air at 600 °C on the microstructure as well as the physico-chemical and electrochemical properties of boron-doped diamond (BDD) electrodes. The thermal treatment of freshly grown BDD electrodes was applied, resulting in permanent structural modifications of surface depending on the exposure time. High temperature affects material corrosion, inducing...
-
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
PublicationWe report on the novel composite nanostructures based on boron-doped diamond thin film grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2...
-
Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes
PublicationPolyfluorinated alkyl substances (PFASs) may reach landfill leachates (LLs) due to improper waste management. In this study perfluorooctanoate (PFOA) and perfluorooctane sulphonate (PFOS) were used as representatives of PFASs in the decomposition on boron-doped diamond electrodes (BDDs) with high (10k ppm) and low (0.5k ppm) boron doping concentrations. The result shows that although better COD removal efficacies are obtained on...
-
Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy
Publication -
Poly-L-Lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases
PublicationBoron-doped diamond (BDD) is a very promising supporting material used in the construction of biosensors for molecular recognition. The direct immobilization of structurally-organized huge molecules, such as poly-L-Lysine (PLL) provides the possibility of determining organic molecules, e.g. nucleic acid bases (e.g. adenine, guanine) or peptides and proteins. This paper describes the direct method for chemical and electrochemical...
-
Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity
PublicationThe electrochemical active surface area (EASA) of polycrystalline boron-doped diamond (BDD) electrodes is heterogeneous and can be affected by numerous factors. There is a strong need for proper consideration of BDD heterogeneity in order to improve this material's range of application in electrochemistry. Localized changes in surface termination due to the influence of oxidation agent result in increased surface resistance. The...
-
3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode
PublicationSynthesis of stable hybrid carbon nanostructure for high-performance supercapacitor electrode with long life-cycle for electronic and energy storage devices is a real challenge. Here, we present a one-step synthesis method to produce conductive boron-doped hybrid carbon nanowalls (HCNWs), where sp2-bonded graphene has been integrated with and over a three-dimensional curved wall-like network of sp3-bonded diamond. The spectroscopic...
-
Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes
Publication -
Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes
PublicationSurface oxidation processes play a key role in understanding electrochemical properties of boron-doped diamond (BDD) electrodes. The type of surface termination groups, which create the potential window of electrolytic water stability or hydrophobicity, influences such properties. In this study the kinetics of oxidation process under anodic polarization were studied in situ by means of Dynamic Electrochemical Impedance Spectroscopy...
-
Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
PublicationNovel highly-oriented (111)-textured boron-doped diamond electrodes (BDDD) featuring high electrochemical activity and electrode stability toward electrochemical analytics were fabricated by deuterium-rich microwave plasma CVD. The high flux deuterium plasma-induced preferential formation of (111)-faceted diamond as revealed by XRD. The highly-oriented diamond surface exhibited improved boron dopant incorporation and activation,...
-
Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique
PublicationAnodic oxidation is a popular way to modify termination bonds at boron doped diamond electrodes altering their electrochemical and physicochemical properties. Our studies, performed with dynamic electrochemical impedance spectroscopy technique, supported with X-ray photoelectron spectroscopy and ellipsometry analysis prove its utility in continuous on-line monitoring of impedance changes on the electrode surface under polarization...
-
Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization
PublicationThe surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual...
-
Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode
PublicationDirect synthesis of nano-structured carbon hybrid consisting of vertically aligned carbon nanograss on top of boron-doped nanocrystalline diamond is demonstrated and the carbon hybrid is further applied as an electrode material for the fabrication of supercapacitor. The hybrid film combines the dual advantages of sp2 (carbon nanograss) and sp3 (nanocrystalline diamond) bonded carbon, possessing not only the excellent electrical...
-
Efficient removal of 2,4,6-trinitrotoluene (TNT) from industrial/military wastewater using anodic oxidation on boron-doped diamond electrodes
PublicationWith growing public concern about water quality particular focus should be placed on organic micropollutants, which are harmful to the environment and people. Hence, the objective of this research is to enhance the security and resilience of water resources by developing an efficient system for reclaiming industrial/military wastewater and protecting recipients from the toxic and cancerogenic explosive compound – 2,4,6-trinitrotoluene...
-
Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies
PublicationNew rapid pathogen detection methods with improved cost-effectiveness and efficiency are currently in the focus of the scientists from all over the world. Based on the experiences from the rapid spread of the influenza virus pandemic in 2009 it is clear that the development of the system for early diagnosis of this infection is essential. The crucial stage of the treatment is the detection of the viral infection during its initial...
-
Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes
PublicationIn this paper, we describe the modification of Nanoscale Impedance Microscopy (NIM), namely, a combination of contact-mode atomic force microscopy with local impedance measurements. The postulated approach is based on the application of multifrequency voltage perturbation instead of standard frequency-by-frequency analysis, which among others offers more time-efficient and accurate determination of the resultant impedance spectra...
-
Topography studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains topography examination of SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles
PublicationElectrode fouling is a major issue in biological detection due to the adhesion of the protein itself and polymerization of biomolecules on the electrode surface, impeding the electron transfer ability and decreasing the current response. To overcome this issue, the use of anti-fouling material, especially boron-doped diamond (BDD) electrode, is an alternative way. However, the electrocatalytic activity of BDD is inadequate compared...
-
Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices
PublicationThere is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity....
-
Chemical and structural studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains chemical analyses and structural studies by XPS and Raman spectroscopy, carried out for SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points for XPS analysis mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Nitrogen-incorporated boron-doped diamond films for enhanced electrochemical supercapacitor performance
PublicationThe electrochemical (EC) supercapacitor, known for its rapid charging, reliability, and versatile applications, demands optimized electrode characteristics and an understanding of their electrochemical behaviour. Although boron-doped diamond (BDD) holds promise as a supercapacitor electrode, a crucial gap exists in comprehending its material behaviour under specific growth conditions. Here, nitrogen-incorporated BDD (N-BDD) films...
-
Determination of Chemical Oxygen Demand (COD) at Boron-doped Diamond (BDD) Sensor by Means of Amperometric Technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates
PublicationFabrication process of optically transparent boron nanocrystalline diamond (BNCD) electrode on silicon and quartz substrate was shown. The B-NCD films were deposited on the substrates using Microwave Plasma Assisted Chemical Vapor Deposition (MWPACVD) at glass substrate temperature of 475 ºC. A homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and film thickness depending from substrate...
-
A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond
PublicationAccording to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development...
-
Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization
PublicationWith the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature...
-
Conductive printable electrodes tuned by boron-doped nanodiamond foil additives for nitroexplosive detection
PublicationAn efficient additive manufacturing-based composite material fabrication for electrochemical applications is reported. The composite is composed of commercially available graphene-doped polylactide acid (G-PLA) 3D printouts and surface- functionalized with nanocrystalline boron-doped diamond foil (NDF) additives. The NDFs were synthesized on a tantalum substrate and transferred to the 3D-printout surface at 200 °C. No other electrode...
-
Formation of Highly Conductive Boron-Doped Diamond on TiO2 Nanotubes Composite for Supercapacitor or Energy Storage Devices
PublicationIn the present paper, we report the phenomena of the formation of the novel composite nanostructures based on TiO2 nanotubes (NTs) over-grown by thin boron-doped diamond (BDD) film produced in Microwave Plasma Enhanced Chemical Vapor Deposition (PE MWCVD). The TiO2 nanotube array overgrown by boron-doped diamond immersed in 0.1 M NaNO3 can deliver high specific capacitance of 7.46 mF cm−2. The composite electrodes were characterized...
-
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
PublicationThere is growing interest in developing diamond electrodes with defined geometries such as, for example, micrometer-sized electrode arrays to acquire signals for electroanalysis. For electroanalytical sensing applications, it is essential to achieve precise conductive patterns on the insulating surface. This work provides a novel approach to boron-doped diamond patterning using nichrome masking for selective seeding on an oxidized...
-
Diamond-Based Supercapacitors with Ultrahigh Cyclic Stability Through Dual-Phase MnO2-Graphitic Transformation Induced by High-Dose Mn-Ion Implantation
PublicationWhile occasionally being able to charge and dischargemore quickly than batteries, carbon-based electrochemical supercapacitors(SCs) are nevertheless limited by their simplicity of processing, adjustableporosity, and lack of electrocatalytic active sites for a range of redox reactions.Even SCs based on the most stable form of carbon (sp3carbon/diamond)have a poor energy density and inadequate capacitance retention during longcharge/discharge...
-
Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds
PublicationThe aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy...
-
The electrochemical response to BDD electrode functionalization with CD147 receptor
Open Research DataThis dataset contains the results of the electrochemical impedance spectroscopy (EIS) measurements of the boron-doped diamond (BDD) electrode functionalization with CD147 receptor. The functionalized electrode was then used for the electrochemical detection of the SARS-CoV-2 virus S1 protein.
-
The electrochemical response to BDD electrode functionalization with ACE2 receptor
Open Research DataThis dataset contains the results of the electrochemical impedance spectroscopy (EIS) measurements of the boron-doped diamond (BDD) electrode functionalization with ACE2 receptor. The functionalized electrode was then used for the electrochemical detection of the SARS-CoV-2 virus S1 protein.
-
The electrochemical response to BDD electrode functionalization with IgG2B receptor
Open Research DataThis dataset contains the results of the electrochemical impedance spectroscopy (EIS) measurements of the boron-doped diamond (BDD) electrode functionalization with IgG2B receptor. The functionalized electrode was then used for the electrochemical detection of the SARS-CoV-2 virus S1 protein.
-
Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film
PublicationWe report the novel modification of a hydrogen-terminated polycrystalline boron-doped electrode with a microwave pulsed-plasma polymerized allylamine. Boron-doped diamond (BDD) was coated with a very thin layer of adherent cross-linked, pinhole- and additive-free allylamine plasma polymer (PPAAm) resistant to hydrolysis and delamination and characterized by a high density of positively charged amino groups. The pulsed microwave...
-
Anna Danuta Dettlaff dr inż.
PeopleShe received her Master of Science degree in engineering with honours in 2013 at the Gdańsk University of Technology at the Department of Analytical Chemistry. In 2013-2017, she was a PhD student in the field of Chemical Technology at Faculty of Chemistry. Her doctoral dissertation was entitled “Nanocomposites based on conducting polymer and carbon materials for supercapacitor application”. In 2015, she was doing a three-month...
-
Low-coherence photonic method of electrochemical processes monitoring
PublicationWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifcally, we combined a fber-optic Fabry– Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-ofprinciple of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond flm...
-
Direct amination of boron-doped diamond by plasma polymerized allylamine film
PublicationA novel microwave pulsed-plasma based method for the modification of the hydrogen-terminated polycrystalline boron-doped diamond (BDD) with a thin film of polymerized allylamine (PPAAm) is reported. A modified BDD surface is resistant to hydrolysis and delamination and is characterized by a high density of positively charged amino groups. Pulsed microwave plasma was applied to improve the degree of cross-linking and bonding of...
-
Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications
PublicationThis paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials’ architecture and the receptor immobilisation procedures. The study...
-
Multisine impedimetric probing of biocatalytic reactions for label-free detection of DEFB1 gene: How to verify that your dog is not human?
PublicationAlbert is a dog (Canis familiaris), but he does not realize this. Albert loves human food (and beer), watching movies on the internet, sleeping in bed, and more. But he should not do all these things. To convince him that, we have desinged a test procedure. The DEFB1 gene is unique to human species. Detecting its presence from saliva and in short periods may offer an advantage in the field of forensic medicine, and influence Albert’s...
-
High resolution XPS analysis of BDD electrode functionalization steps towards SARS-CoV-2 detection
Open Research DataThis dataset contains the results of the high-resolution XPS analyses of a set of boron-doped diamond (BDD) electrodes after consecutive functionalization steps toward anchoring of a receptor capable of SARS-CoV-2 virus detection. The analysis was carried out in the binding energy range of C1s, N1s, O1s, Ni2p3/2. The measurements were carried out on...